.. _example-ml-tpa: Two-photon absorption cross sections with machine learning ========================================================== Two-photon absorption (TPA) is an important physical phenomenon which can be exploited in many different applications like upconverted laser. MLatom implements machine learning method predicting TPA cross section for a new molecule just by providing its SMILES (see `this paper `_ in Adv. Sci. for details). Input files ----------- Here we show how to calculate TPA cross section for RHODAMINE 6G and RHODAMINE 123 molecules with MLatom input file mltpa.inp: .. code:: text MLTPA SMILESfile=Smiles.csv auxfile=_aux.txt This input requires ``Smiles.csv`` file with SMILES of molecules: .. code:: text CCNC1=CC2=C(C=C1C)C(=C3C=C(C(=[NH+]CC)C=C3O2)C)C4=CC=CC=C4C(=O)OCC.[Cl-] COC(=O)C1=CC=CC=C1C2=C3C=CC(=N)C=C3OC4=C2C=CC(=C4)N.Cl and optional ``_aux.txt``, which defines the wavelength_lowbound, wavelength_upbound, and Et30 for making predicitons: .. code:: text 600,850,55.4 600,600,33.9 After you prepared your input files mltpa.inp, :download:`Smiles.csv`, and :download:`_aux.txt`, you can run MLatom as usual. Computational results --------------------- After the calculations finish, the predicted TPA cross section values are saved in two files for two molecules: ``tpa1.txt`` and ``tpa2.txt``. For our examples, they look like: .. parsed-literal:: wavelength,predicted_sigma (GM) 600.0,285.19455 610.0,297.71707 620.0,284.11694 ...... 810.0,121.51988 820.0,116.537994 830.0,118.04909 840.0,103.65925 850.0,113.72374 and .. parsed-literal:: wavelength,predicted_sigma (GM) 600.0,138.2346