Source code for mlatom.initial_conditions

#!/usr/bin/env python3
'''
.. code-block::

  !---------------------------------------------------------------------------! 
  ! initial_conditions: Module for generating initial conditions              ! 
  ! Implementations by: Yi-Fan Hou & Pavlo O. Dral                            ! 
  !---------------------------------------------------------------------------! 
'''
import numpy as np 
import warnings
from . import data
from . import stopper
from . import constants
from . import thermo 

[docs] def generate_initial_conditions(molecule=None, generation_method=None, number_of_initial_conditions=1, file_with_initial_xyz_coordinates=None, file_with_initial_xyz_velocities=None, eliminate_angular_momentum=True, degrees_of_freedom=None, initial_temperature=None, initial_kinetic_energy=None): ''' Generate initial conditions Arguments: molecule (:class:`data.molecule`): Molecule with necessary information generation_method (str): Initial condition generation method number_of_initial_conditions (int): Number of initial conditions to generate, 1 by default file_with_initial_xyz_coordinates (str): File with initial xyz coordinates, only valid for ``generation_method='user-defined'`` file_with_initial_xyz_velocities (str): File with initial xyz velocities, only valid for ``generation_method='user-defined'`` eliminate_angular_momentum (bool): Remove angular momentum from velocities, valid for ``generation_method='random'`` degrees_of_freedom (int): Degrees of freedom of the molecule, by default remove translational and rotational degrees of freedom. It can be a negative value, which means that some value is subtracted from 3*Natoms initial_temperature (float): Initial temperature in Kelvin, control random initial velocities initial_kinetic_energy (float): Initial temperature in Hartree, control random initial velocities .. table:: :align: center ============================= ============================================= generation_method description ============================= ============================================= ``'user-defined'`` (default) Use user-defined initial conditions ``'random'`` Generate random velocities ============================= ============================================= .. ``'wigner'`` Use Wigner sampling .. ``'maxwell-boltzmann'`` Randomly generate initial velocities from Maxwell-Boltzmann distribution Returns: A molecular database (:class:`ml.data.molecular_database`) with ``number_of_initial_conditions`` initial conditions Examples: .. code-block:: python # Use user-defined initial conditions init_cond_db = ml.generate_initial_conditions(molecule = mol, generation_method = 'user-defined', file_with_initial_xyz_coordinates = 'ethanol.xyz', file_with_initial_xyz_velocities = 'ethanol.vxyz', number_of_initial_conditions = 1) # Generate random velocities init_cond_db = ml.generate_initial_conditions(molecule = mol, generation_method = 'random', initial_temperature = 300, number_of_initial_conditions = 1) .. # Use Wigner sampling .. init_cond_db = ml.generate_initial_conditions(molecule = mol, .. generation_method = 'wigner', .. number_of_initial_conditions = 1) .. .. note:: .. Wigner sampling needs Hessian matrix. You can use ``ml.models.methods.predict(molecule=mol,calculate_hessian=True)`` to get Hessian matrix. ''' if initial_temperature != None and initial_kinetic_energy != None: stopper.stopMLatom('Cannot use initial_temperature and initial_kinetic_energy at the same time') if initial_temperature == None and initial_kinetic_energy == None: initial_temperature = 300 if degrees_of_freedom != None: if degrees_of_freedom <= 0: degrees_of_freedom = 3 * len(molecule.atoms) + degrees_of_freedom else: if eliminate_angular_momentum: degrees_of_freedom = max(1, 3 * len(molecule.atoms) - 6) else: degrees_of_freedom = max(1, 3 * len(molecule.atoms) - 3) init_cond_db = data.molecular_database() Natoms = len(molecule.atoms) if generation_method == 'user-defined': init_cond_db.read_from_xyz_file(file_with_initial_xyz_coordinates) init_cond_db.add_xyz_vectorial_properties_from_file(file_with_initial_xyz_velocities, xyz_vectorial_property='xyz_velocities') elif generation_method == 'random': for irepeat in range(number_of_initial_conditions): new_molecule = molecule.copy(atomic_labels = ['xyz_coordinates'], molecular_labels = []) velocities = generate_random_velocities(new_molecule,eliminate_angular_momentum,degrees_of_freedom,temp=initial_temperature,ekin=initial_kinetic_energy) for iatom in range(Natoms): new_molecule.atoms[iatom].xyz_velocities = velocities[iatom] init_cond_db.molecules.append(new_molecule) elif generation_method.casefold() == 'maxwell-boltzmann': init_cond_db.read_from_numpy(coordinates=np.repeat([molecule.xyz_coordinates], number_of_initial_conditions, axis=0), species=np.repeat([molecule.element_symbols], number_of_initial_conditions, axis=0)) velocities = np.random.randn(*init_cond_db.xyz_coordinates.shape) * np.sqrt(initial_temperature * constants.kB / (init_cond_db.nuclear_masses / 1000 / constants.Avogadro_constant))[...,np.newaxis] / 1E5 init_cond_db.add_xyz_vectorial_properties(velocities, xyz_vectorial_property='xyz_velocities') elif generation_method == 'wigner': coordinates_all, velocities_all, linear = wignersample(number_of_initial_conditions,molecule) mass_ = np.array([each.nuclear_mass for each in molecule.atoms]) mass = mass_.reshape(Natoms,1) total_mass = np.sum(mass_) for irepeat in range(number_of_initial_conditions): if eliminate_angular_momentum: velocities_all[irepeat] = getridofang(coordinates_all[irepeat],velocities_all[irepeat],mass_) v_cm = sum(velocities_all[irepeat]*mass)/total_mass velocities_all[irepeat] -= v_cm for irepeat in range(number_of_initial_conditions): new_molecule = molecule.copy(atomic_labels = [], molecular_labels = []) for iatom in range(Natoms): new_molecule.atoms[iatom].xyz_coordinates = coordinates_all[irepeat][iatom] new_molecule.atoms[iatom].xyz_velocities = velocities_all[irepeat][iatom] init_cond_db.molecules.append(new_molecule) #print("wigner") #init_cond_db.molecules.append(molecule) # Replace with actual new initial conditions return init_cond_db
def read_velocities_from_file(filename): velocities = [] with open(filename, 'r') as fxyz: nlines = 0 natoms = 0 for line in fxyz: nlines += 1 if nlines == 1: natoms = int(line) elif nlines > 2 and nlines <= 2 + natoms: yy = line.split() velocities.append([float(xx) for xx in yy[-3:]]) if nlines == 2 + natoms: break return velocities def generate_random_velocities(molecule,noang,dof,temp=None,ekin=None): np.random.seed() Natoms = len(molecule.atoms) randnum = np.random.randn(Natoms,3) coord = np.array([each.xyz_coordinates for each in molecule.atoms]) mass_ = np.array([each.nuclear_mass for each in molecule.atoms]) mass = np.array(mass_).reshape(Natoms,1) if temp != None: # kb = 1.380649E-23 # Unit: J/K # hartree = 27.21070 * 1.602176565E-19 # Unit: J/Hartree # kb = kb / hartree # Unit: Hartree/K kb = constants.kB_in_Hartree # Unit: Hartree/K kinetic_energy = dof/2.0 * kb * temp else: kinetic_energy = ekin linearity = molecule.is_it_linear() # Eliminate total angular momentum if noang: if linearity: rand_velocity = generate_random_velocities_for_linear_molecule(molecule) else: #rand_velocity = randnum / np.sqrt(mass*1822) rand_velocity = randnum / np.sqrt(mass*constants.ram2au) rand_velocity = getridofang(coord,rand_velocity,mass_) else: rand_velocity = randnum / np.sqrt(mass*constants.ram2au) #print(rand_velocity) # Raise warning if degrees of freedom are not compatible to the linear molecule if linearity: if dof != 3*Natoms-5: #warnings.warn_explicit(f'Linear molecule detected, but degrees of freedom used is {dof} instead of {3*Natoms-5}') print(f'WARNING: Linear molecule detected, but degrees of freedom used is {dof} instead of {3*Natoms-5}') # Eliminate total linear momentum total_mass = sum(mass)[0] v_cm = sum(rand_velocity*mass)/total_mass rand_velocity = rand_velocity - v_cm #rand_energy = np.sum((rand_velocity**2) * (mass*1822)) / 2.0 rand_energy = np.sum((rand_velocity**2) * (mass*constants.ram2au)) / 2.0 ratio = rand_energy / kinetic_energy velocity = rand_velocity / np.sqrt(ratio) # Unit: a.u. # bohr = 0.5291772083 # 1 Bohr = 0.5291772083 Angstrom # time = 2.4189E-2 # Time Unit: 1 a.u. = 2.4189E-17 s = 2.4189E-2 fs # velocity = velocity * bohr / time # Unit: Angstrom / fs velocity = velocity * constants.Bohr2Angstrom / constants.au2fs # Unit: Angstrom / fs return velocity def getridofang(coord,vel,mass): omega = getAngV(coord,vel,mass) coord_ = coord - getCoM(coord,mass) vel = vel - np.cross(omega,coord) return vel def getAngV(xyz,v,m,center=None): L=getAngM(xyz,v,m,center) I=getMomentOfInertiaTensor(xyz,m,center) omega=np.linalg.inv(I).dot(L) return omega def getCoM(xyz,m=None): if m is None: m=np.ones(xyz.shape[-2]) return np.sum(xyz*m[:,np.newaxis],axis=-2)/np.sum(m) def getAngM(xyz,v,m,center=None): if center is None: centered=xyz-getCoM(xyz,m) else: centered=xyz-center L=np.sum(m[:,np.newaxis]*np.cross(centered,v),axis=0) return L def getMomentOfInertiaTensor(xyz,m,center=None): if center is None: center=getCoM(xyz,m) centered=xyz-center I=np.zeros((3,3)) for i in range(3): for j in range(3): for k in range(len(m)): I[i,j]+=m[k]*(np.sum(centered[k]**2)-centered[k,i]*centered[k,j]) if i==j else m[k]*(-centered[k,i]*centered[k,j]) return I def readGaussianNM(filename): freqs = [] ele = [] with open(filename,'r') as f: lines = f.readlines() freqind = [] for iline in range(len(lines)): if 'Frequencies' in lines[iline]: freqind.append(iline) # Get the number of normal modes Nnm = 0 for eachind in freqind: Nnm += len(lines[eachind].strip().split()) - 2 # Get the number of atoms Natoms = 0 indtemp = freqind[0] ii = 1 while (True): linesplit = lines[indtemp+ii]#.strip().split() ii+=1 if 'Atom' in linesplit: break Ncols = 3 * (len(lines[indtemp].strip().split()) - 2) + 2 indtemp += ii ii=0 while True: if len(lines[indtemp+ii].strip().split()) == Ncols: ii+=1 else: break Natoms = ii # Read atom type for iatom in range(Natoms): ele.append(eval(lines[indtemp+iatom].strip().split()[1])) # Read normal modes nmflag = 0 ntriv = 3*Natoms - Nnm if ntriv == 6: linear = 0 elif ntriv == 5: linear = 1 #print(linear) normalmodes = np.zeros((3*Natoms,Natoms,3)) for itriv in range(ntriv): normalmodes[itriv] = 1.0 / np.sqrt(3*Natoms) for eachind_ in freqind: #print(lines[eachind_]) Ncolnm = len(lines[eachind_].strip().split()) - 2 for icolnm in range(Ncolnm): freqs.append(eval(lines[eachind_].strip().split()[2+icolnm])) #print(freqs) eachind = eachind_ + 5 for iatom in range(Natoms): linetemp = lines[eachind+iatom].strip().split() #print(linetemp) linetemp = [eval(each) for each in linetemp] for icolnm in range(Ncolnm): normalmodes[ntriv+nmflag+icolnm][iatom] = linetemp[2+icolnm*3:5+icolnm*3] nmflag += Ncolnm return normalmodes, freqs, ele, linear def nm2cart(nms,atom_mass): Natoms = len(nms[0]) cart_nms = np.copy(nms) for inm in range(len(nms)): # reduced mass reduced_amu = 0.0 for iatom in range(Natoms): reduced_amu += np.sum(nms[inm][iatom]**2*atom_mass[iatom]) # cartesian normal modes (au) for iatom in range(Natoms): cart_nms[inm][iatom] /= np.sqrt(reduced_amu*1822.888515) # Mass weighted normal modes: w_nmode = np.copy(cart_nms) for inm in range(len(nms)): for iatom in range(Natoms): w_nmode[inm][iatom] *= np.sqrt(atom_mass[iatom]*1822.888515) return cart_nms, w_nmode def herm2(xarg,x,nn,cost): h = np.zeros(55) h[0] = 1.0 h[1] = xarg + xarg if (nn>=2): for mm in range(1,nn+1): ff = xarg*h[mm] - (mm-1)*h[mm-1] h[mm+1] = ff+ff ff = h[nn] herm1 = ff*cost*np.exp(-x*x*0.5) value = herm1*herm1 return value # NewtonX-2.4-B06 initcond/sample.f90 def sample(amp,ivib,quant,shift,broad): turnpo = np.sqrt(ivib*2.0+1.0) xmin = -turnpo - quant xdel = -xmin - xmin # Initial conditions in the vibrational ground state if ivib == 0: while True: x1 = np.random.random() xx = xmin + xdel*x1 fsval = np.exp(-xx*xx) x2 = np.random.random() if (x2 < fsval): break xarg = xx / np.sqrt(broad) + shift coor = xarg*amp return coor # Initial condition in vibrational excited states nstep = 50*ivib dlt = 1.0/nstep fzb = -1000.0 k = 0 xarg = 0.0 while (xarg < -xmin): k = k+1 xx = xmin+dlt*k xarg = xx / np.sqrt(broad) + shift fz = herm2(xarg,xx,ivib,1.0) if (fz >= fzb): fzb = fz fmax = fzb cost = np.sqrt(1.0/fmax) while True: x1 = np.random.random() xx = xmin + xdel*x1 xarg = xx / np.sqrt(broad) + shift fsval = herm2(xarg,xx,ivib,cost) x2 = np.random.random() if (x2<= fsval): break coor = xarg*amp return coor # NewtonX-2.4-B06 initcond/initqp.f90 # !! the len of all normal mode related array is numcoo def rdmol(atom_mass,linear,freq): eps = 1.0E-15 atmau = np.array(atom_mass)*1822.888515 Natoms = len(atom_mass) numcoo = 3*Natoms - 6 + linear anq = np.zeros(numcoo) # vibrational quantum numbers (all zero) freq_au = np.array(freq) * 4.55633539E-6 # cm 2 au # factor used for quantum distribution amp = np.zeros(3*Natoms) for i in range(numcoo): amp[i] = 1.0 / np.sqrt(freq_au[i]) return anq, amp, freq_au, atmau # NewtonX-2.4-B06 initcond/inqp.f90 def inqp(geomEq,cn,w,anq,amp,numcoo,atmau): eps = 1.0E-15 cint = [] dcint = [] dum0 = 0.0 dum1 = 0.0 Natoms = len(atmau) samp_points = np.zeros((2,numcoo)) q = np.array(geomEq) # size: (Natoms,3) v = np.zeros((Natoms,3)) for i in range(numcoo): wwai = amp[i]*w[i] ivb = int(abs(anq[i])+0.5) quant = 4.0 cint.append(sample(amp[i],ivb,quant,0.0,1.0)) dcint.append(sample(wwai,ivb,quant,0.0,1.0)) enmi = w[i]*(ivb+0.5) # Vibrational energies epot = 0.5*(w[i]*cint[i])**2 # Potential energies samp_points[0][i] = cint[i]/amp[i] samp_points[1][i] = dcint[i]/wwai dum0 += epot dum1 += enmi for iatom in range(Natoms): for icoord in range(3): fac = 1.0/np.sqrt(atmau[iatom]) for i in range(numcoo): q[iatom][icoord] += cn[i][iatom][icoord]*cint[i]*fac v[iatom][icoord] += cn[i][iatom][icoord]*dcint[i]*fac return q,v # Unit: a.u. def wignersample(npoints,molecule): qlist = [] vlist = [] geomEq = np.array([each.xyz_coordinates for each in molecule.atoms]) mass = molecule.get_nuclear_masses() mass = mass.reshape(1,len(mass)) # Calculate normal modes from Hessian matrix #nm,freq,ele,linear_int = readGaussianNM(nmfile) if not 'hessian' in molecule.__dict__.keys(): stopper.stopMLatom('Hessian matrix not found -- cannot do wigner sampling') freq,nm,_,_ = thermo.vibrational_analysis(mass,molecule.hessian,mode_type='MDU') linear = molecule.is_it_linear() Natoms = len(molecule.atoms) if linear: ntriv = 5 linear_int = 1 else: ntriv = 6 linear_int = 0 freq = freq[ntriv:] for itriv in range(ntriv): nm[itriv] = 1.0 / np.sqrt(3*Natoms) numcoo = len(freq) ntriv = len(nm)-numcoo #print(len(nm),len(freq),len(ele),linear) atom_mass = [each.nuclear_mass for each in molecule.atoms] cart_nms, w_nmode = nm2cart(nm,atom_mass) geomEq_au = np.array(geomEq) / constants.Bohr2Angstrom anq, amp, freq_au, atmau = rdmol(atom_mass,linear_int,freq) for ipoint in range(npoints): q,v = inqp(geomEq_au,w_nmode[ntriv:],freq_au,anq,amp,numcoo,atmau) qlist.append(q) vlist.append(v) # Transform from a.u. to Angstrom & fs qlist = np.array(qlist) * constants.Bohr2Angstrom vlist = np.array(vlist) * constants.Bohr2Angstrom / constants.au2fs return qlist, vlist, linear_int # generate random velocities without angular momentum for linear molecule def generate_random_velocities_for_linear_molecule(molecule): np.random.seed() Natoms = len(molecule.atoms) coord = molecule.xyz_coordinates randnum = np.random.randn(Natoms) avgnum = np.average(randnum) randnum = randnum - avgnum vec = coord[1] - coord[0] rand_velocities = [vec*each for each in randnum] return rand_velocities