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ML in chemistry

What year was this Review published?

Authors??

Recent work on neural networks in chemistry is reviewed and essential 
background to this fast-spreading method is given. Emphasis is placed on the 
back-propagation algorithm, because of the extensive use of this form of learning. 
Hopfield networks, adaptive bidirectional associative memory, and Kohonen
learning are briefly described and discussed. Applications in spectroscopy 
(mass, infrared, ultraviolet, NMR), potentiometry, structure/activity 
relationships, protein structure, process control and chemical reactivity 
are summarized.
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ML in chemistry

Recent work on neural networks in chemistry is reviewed and essential 
background to this fast-spreading method is given. Emphasis is placed on the 
back-propagation algorithm, because of the extensive use of this form of learning. 
Hopfield networks, adaptive bidirectional associative memory, and Kohonen
learning are briefly described and discussed. Applications in spectroscopy 
(mass, infrared, ultraviolet, NMR), potentiometry, structure/activity 
relationships, protein structure, process control and chemical reactivity 
are summarized.
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7P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388

ML for excited states
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Gartner’s hype cycle

Jeremykemp at English Wikipedia [GFDL or CC BY-SA], from Wikimedia Commons
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Number of 
possible move 
sequences in 

chess is very big:

No brute-force 
solution of chess 

is possible

Example: ML in chess
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• Making machines play chess was considered 
by the pioneers of AI as an important 
milestone for AI.

• In 1950s the first computer chess programs 
were developed with contributions
by Alan Turing.

• In 1997 computer has for the 
first time defeated the best 
human player in a match

Example: ML in chess



dr
-d
ra
l.c
om

11

But are the computer chess 
programs intelligent?

The world champion Magnus 
Carlsen in 2017: "The problem is 
that it still feels like you are playing 
somebody stupid when you are 
playing the computer."

Photo by Andreas Kontokanis from 
Piraeus, Greece (Carlsen Magnus) [CC 
BY-SA 2.0], via Wikimedia Commons

Example: ML in chess
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The chess programs Magnus Carlsen has been 
talking about are coded explicitly by humans. 
Algorithms and hardware have been improved 
ca. 70 years.

Can ML beat 70 years of human effort?

Example: ML in chess
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The name ‘Machine learning’ (ML) implies that machines try to 
learn from [Big] data by themselves without being 
programmed explicitly by humans.

ML is an application of a broader artificial intelligence (AI) field to 
practical problems.

Machine learning
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On 5 December 2017 a pre-print by Google’s 
DeepMind team[1] has been published about 
AlphaZero ML-based program:[2]
• It was trained only by self-play for 8 hours
• It could beat the best computer chess 

program in a match
• Chess grandmasters describe AlphaZero’s play 

as human-like and were impressed by its 
positional and attacking play

[1] D. Hassabis et al., arXiv:1712.01815, 2017
[2] D. Hassabis et al., Science 2018, 362, 1140

Example: ML in chess
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Power of ML and what it needs

This is a power of ML: it can (self-)learn so fast that it delivers 
better results than programs coded explicitly by humans over 
decades!
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This is a power of ML: it can (self-)learn so fast that it delivers 
better results than programs coded explicitly by humans over 
decades!

The “only” thing it requires is lots of data and good hardware: we 
have it all nowadays 

Power of ML and what it needs
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Chemistry and Big Data

Chemistry is rich in Big Data:
• Number of possible compounds is infinite
• Number of points on a potential energy surface (PES) is infinite
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Chemistry is more difficult than chess:

After many years of ML in chemistry we are only 
starting to use its potential

ML in chemistry
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ML in chemistry: AlphaFold (2)

Video from https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-
challenge-in-biology 

Thomas 
Shafee, CC 
BY 4.0, via 
Wikimedia 
Commons
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Time-independent Schrödinger equation

!H=− ∑!"#$ #
%∇!

% − ∑&"#' #
%'!

∇&% −∑!"#$ ∑&"#' (!
)",!

+∑!"#$ ∑*+!$ #
)",$
+ ∑&"#' ∑,+#' (!(%

-!,%

!H - Hamiltonian
Ψ – wavefunction
& - energy

!HΨ=&Ψ

Quantum chemistry
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Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Bond length in H2
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The Schrödinger equation
!HΨ=&Ψ

The electronic Schrödinger equation can be solved exactly 
only for two-body systems (e.g. hydrogen atom with 

1 nucleus + 1 electron)

Approximations are needed!

!H=− ∑!"#$ #
%∇!

% − ∑&"#' #
%'!

∇&% −∑!"#$ ∑&"#' (!
)",!

+∑!"#$ ∑*+!$ #
)",$
+ ∑&"#' ∑,+#' (!(%

-!,%

Quantum chemistry
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Accuracy

Ti
m

in
g

Molecular
Mechanics

Semi-
empirical

DFT

Ab initio

Quantum chemistry
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Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Machine learning (ML): ??? Å, time?

Bond length in H2
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B3LYP/6-31G*
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'

GFN2-xTB
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'

MP2/cc-pVDZ
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'

ANI-1ccx
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'

MLmodelType=ANI MLmodelIn=ani.pt
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'

UAIQM
geomopt
xyzfile='5

C         0.0000000000        0.0000000000        0.0000000000
H         1.0870000000        0.0000000000        0.0000000000
H        -0.3623333220       -1.0248334322       -0.0000000000
H        -0.3623333220        0.5124167161       -0.8875317869
H        -0.3623333220        0.5124167161        0.8875317869
'
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Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Machine learning (ML): ??? Å, time?

Bond length in H2
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Bond length in H2

Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Machine learning (ML): 0.7415 Å, ~0.3 seconds
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Bond length in H2

Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Machine learning (ML): 0.7415 Å, ~0.3 seconds

P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 
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Accuracy

Ti
m

in
g

Molecular
Mechanics

Semi-
empirical

DFT

Machine Learning

Ab initio

P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 

AI is a game changer
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The name ‘Machine learning’ (ML) implies that machines try to 
learn from [Big] data by themselves without being 
programmed explicitly by humans.

ML is an application of a broader artificial intelligence (AI) field to 
practical problems.

Machine learning
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34Perspective: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336 

Machine learning in quantum chemistry
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Conventional programming in quantum chemistry:
Code for molecular orbitals
Code for excitation energies

Code for oscillator strengths
…

Machine learning (in principle – adaptations required!):
The same code for all above

MOs excitation energies Oscillator strength

Training data

Quantum chemistry vs Machine learning
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Bond length in H2

Experiment: 0.7414 Å

Quantum Chemistry: 0.7415 Å, ~5 CPU-days
(FCI/aug-cc-pV6Z)

Machine learning (ML): 0.7415 Å, ~0.3 seconds

P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 
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How to get such an ML model?
• data
• energies at FCI: E_FCI_451.dat)
• XYZ geometries (h2.xyz)

• ML model
• KREG (train.inp)
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Types of Machine Learning
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Supervised Machine Learning
Input (x) → f(x) → Output (y)

Given collection of known {x,y} find a function f(x)

Types of Machine Learning
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Supervised Machine Learning
Input (x) → f(x) → Output (y)

Given collection of known {x,y} find a function f(x)

Use this function for making new predictions given just {x’}

Types of Machine Learning
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Supervised Machine Learning
Input (x) → f(x) → Output (y)

Given collection of known {x,y} find a function f(x)

Use this function for making new predictions given just {x’}

training set ML modeltrain

Types of Machine Learning
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Unsupervised Machine Learning

Types of Machine Learning
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Unsupervised Machine Learning
Only input (x)

Types of Machine Learning
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Unsupervised Machine Learning
Only input (x)

Find correlations Divide x into clusters

Types of Machine Learning

Find patterns
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Supervised Machine Learning
Input (x) → f(x) → Output (y)

Unsupervised Machine Learning

Given collection of known {x,y} find a function f(x)

Use this function for making new predictions given just {x’}

training set ML modeltrain

Only input (x)

Find correlations Divide x into clusters

Types of Machine Learning
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47P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 

Machine learning in chemistry
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48P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 

Machine learning in chemistry
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Unsupervised

ML

Machine 

Learning

Data 

Mining

Types of Machine Learning
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Unsupervised ML for MD

Unsupervised ML is useful for analyzing MD trajectories and getting 
physicochemical insights

Li, Xie, Hu, Lan, J. Chem. Theory Comput. 2017, 13, 4611

On-the-fly
surface-hopping 
nonadiabatic MD of 
CH2NH2+

PS6
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Supervised 
Machine 
Learning

Unsupervised 
Machine 
Learning

Semi-
supervised 
Machine 
Learning

Types of Machine Learning
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Semi-supervised ML in Chemistry
Semi-supervised ML is often used in protein research, 

e.g. it can improve identification of correct peptide from mass-spectra

Kall, Canterbury, Weston, Noble, MacCoss, Nature Methods 2007, 4, 923



dr
-d
ra
l.c
om

53

Reinforcement Learning
ML tries to maximize 

rewards from environment

In case of chess:
Tries to maximize the 

number of wins

Types of Machine Learning
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Reinforcement Learning

For example, reinforcement learning can be used in chemistry for
optimizing chemical reactions

Zhou, Li, Zare, ACS Cent. Sci. 2017, 3, 1337
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Supervised Machine Learning
Input (x) → f(x) → Output (y)

Given collection of known {x,y} find a function f(x)

Use this function for making new predictions given just {x’}

training set ML modeltrain

Types of Machine Learning

• Data
• Choice of x (descriptor)
• Choice of y (labels)
• Fitting function (ML algorithm, ML model)
• Optimization of ML model parameters
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Chemistry and Machine Learning

[1] Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. 2nd ed.; Springer-Verlag, 2009

(Supervised) 
Machine learning serves for function approximation[1]

ML takes little time for making new predictions

Quantum Chemical Property(molecule) = function(nuclear coordinates)
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What we need to have:
• Data
• QC Model (Hamiltonian) 

vs 
ML Model (not constrained by physical model)  

• Parameters

What we need to do:
• Fit parameters to achieve an optimization 

goal
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The difference between QC and ML models
• The goal of QC model (Hamiltonian) is to be 

physically correct as much as possible 
• The goal of ML Model is to generalize (not 

just to fit!) from data as good as possible
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Q: What parameters are in HF/3-21G?



dr
-d
ra
l.c
om

60

Parameters (in red) are in the basis set, e.g.,
for hydrogen at 3-21G:

Parameters in Hartree–Fock/3-21G

!!"# " =$

$%!

&
%$,1s
# 8)′

(

+
(

!/*
exp −)′0

&

!!"## " =$

$%!

&
8)′′

(

+
(

!/*
exp −)′′0

&

How this parameters were obtained?
By optimizing them so that SCF atomic energy 
reaches minimum

Book: Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced 
Electronic Structure Theory. Dover Publications, Inc.: Mineola, New York, 1996
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Q: What parameters are in B3LYP?
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Parameters (in red) in B3LYP:

Parameters in B3LYP

1+, = 1 − 2 1x
LDA

+ 21x
HF

+ 91x
GGA

+ ;1c
GGA

+ 1 − ; 1c
LDA

How this parameters were obtained?
They were optimized on the G2 data set with 
atomization energies, ionization potentials, 
proton affinities and total atomic energies
(a = 0.20, b = 0.72, and c = 0.81).

B3LYP: A. D. Becke. J. Chem. Phys. 1993, 98, 1372.
Book: W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory. Second 
ed.; WILEY-VCH Verlag GmbH: Weinheim, 2001; pp. 293
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ML algorithms
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ML Algorithms

• Various types of neural networks (NN),
deep learning

• Gaussian processes (GP)
• Kernel ridge regression (KRR)
• Support vector machines (SVMs) & 

support vector regression (SVR)

• Linear regression!
• Decision trees
• k-Nearest neighbor algorithm
• and many more…
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Parametric vs nonparametric algorithms
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Some of the ML Algorithms

f(x; parameters)

= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Number of parameters is fixed: parametric model

Neural networks are also parametric models

Kernel ridge regression (KRR)

= >$; D =$

.%!

/
tr

).G >$ , >.; I

Number of parameters depends on number of training points:
nonparametric model, e.g. KRR
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ML Algorithms

• Various types of neural networks (NN),
deep learning

• Gaussian processes (GP)
• Kernel ridge regression (KRR)
• Support vector machines (SVMs) & 

support vector regression (SVR)

• Linear regression!
• Decision trees
• k-Nearest neighbor algorithm
• and many more…
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ML algorithms

= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Kernel ridge regression (KRR) Neural networks (NN)

Quantum Chemistry in the Age of Machine Learning. Ed. P. O. Dral. Elsevier: Amsterdam, 
Netherlands, 2023.
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= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Kernel ridge regression (KRR) Neural networks (NN)

Quantum Chemistry in the Age of Machine Learning. Ed. P. O. Dral. Elsevier: Amsterdam, 
Netherlands, 2023.

ML algorithms
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Linear regression

= >$; @ = A!B$! +A&B$& +⋯

Multiple linear regression

= >$; @ =$

.%!

0
A.B$.

How to find the coefficients '*?

= >$; @ = >$
1
@
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= >$; @ = A!B$! +A&B$& +⋯

Multiple linear regression

= >$; @ =$

.%!

0
A.B$.

We can find the coefficients @ using the method of least squares, where 
coefficients are fit to get the minimum residual sum of squares (RSS) with 

respect to the training set with Jtr reference values y:

arg min2$
$%!

/
tr

= >$; @ − P$ &

= >$; @ = >$
1
@

Linear regression
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arg min2$
$%!

/
tr

= >$; @ − P$ &

Q R =$

$%!

/!"
>$
1
@ − P$

&

Q R = S@ − T
1
S@ − T

S =

B!! ⋯ B!0
⋮ ⋱ ⋮

B/tr! ⋯ B/tr0

WQ R

WR
= 2S

1
S@ − T = Y

Linear regression
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Linear regression

S
1
S@ = S

1
T

@ = S
1
S

3!
S
1
T

Linear regression has an analytical solution!

While it is very advantageous, it assumes that the data follow the linear 
distribution, which is often not the case
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Linear regression

Task 4: Fit linear model E = aR on a training set with 
20 points sampled along H2 dissociation curve

(energies E in Hartree at FCI/aug-cc-pV6Z;
internuclear distances R in Angstrom) 

Calculate R2 and residual sum of squares (RSS)

B$! = Z

Task 5: Fit linear regression with intercept b? 

Calculate R2 and residual sum of squares (RSS)

E = aR+b

RSS =$

$%!

/
tr

= >$; @ − P$ &
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Linear regression

y = -0.2962x
R² = 0.7658

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 2 4 6

E = aR

RSS=5.042557804 Hartree = 3164.3 kcal/mol!

Very wrong!

H2 dissociation curve
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Linear regression

Task 5: Fit linear regression with intercept b? 

Calculate R2 and residual sum of squares (RSS)

E = aR+b

RSS =$

$%!

/
tr

= >$; @ − P$ &
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Linear regression

E = -0.2962 R
R² = 0.7658

RSS = 5.0425578 Hartree
= 3164 kcal/mol

E = 0.0325 R - 1.1254
R² = 0.6566

RSS = 0.02055899 Hartree 
= 13 kcal/mol -1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 2 4 6

E = aR
E = aR+b

Much better,
but still qualitatively wrong!
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Linear regression

= >$; @ = A!B$! +A&B$& = A!Z + A&1 = 2Z + 9

It is equivalent to mapping function Z → Z, 1 , Φ Z = Z, 1 , where Φ maps 
from p-dimensional input space into pd-dimensional feature space

Now we can solve multiple linear regression with two variables 

Q: What about linear regression with intercept b?

E = aR+b

B$! = Z$

B$& = 1

A! = 2

A& = 9
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Linear regression

Any ideas how to get the dissociation curve shape 
right?
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Linear regression

= >$; @ = A!B$! +A&B$& + A(B$( = A!Z$
34
+ A&Z$

3!&
+ A(1 = 2Z$

34
+ 9Z$

3!&
+ ;

We can use mapping Z → Z
34
, Z

3!&
, 1 inspired by Lennard-Jones potential, 

this allows us to treat data set (E, R) nonlinear in input space (R) using 
vectors in feature space Z34, Z3!&, 1
Now we can solve multiple linear regression with three variables: 

B$! = Z$
34

B$& = Z$
3!&

A! = 2

A& = 9

Q: Any ideas how to get the dissociation curve shape 
right?

B$( = 1

A( = ;

Max Pinheiro Jr, P. O. Dral, Kernel methods.
In Quantum Chemistry in the Age of Machine Learning,
P. O. Dral, Ed. Elsevier: 2023.
Paperback ISBN: 9780323900492
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Linear regression

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95
0 2 4 6

E Eest

Qualitatively right,
but still very large error!

RSS=0.02464225 Hartree = 15 kcal/mol!

! = #$()* + &$()+, + '
! = −0.03$()* + 0.00045$()+, − 1.02060806
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Linear regression

Yes! We can go to infinite number of variables!

How?

Using a kernel trick

Can we extend it to more variables and make it more 
flexible?
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Linear regression

Let’s rewrite the linear regression equation by representing the regression 
coefficients via a sum over all training points:

A. =$

$%!

/!"
)$B$.

= >′; @ =$

.%!

0
A.B.

#

= >′ =$

.%!

0
$

$%!

/!"
)$B$. B.

#
=$

$%!

/!"
)$$

.%!

0
B$.B.

#
=$

$%!

/!"
)$>$

1
>
#

>$
1
>
#
= >$ , ># Dot-product = inner product = scalar product

of two vectors
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Linear regression

As we have seen before, we can map vectors > and >′ from p-dimensional 
input space into pd-dimensional feature space using mapping function Φ:

= >′ =$

$%!

/!"
)$Φ >$ 1

Φ >′

The kernel trick is substitution of the calculation of the dot-product using 
explicit representations of vectors in the feature space by using a kernel 
function:

In previous examples we new the mapping function and explicit forms of 
vectors in the feature space. But all we need is a dot-product between 
vectors in the feature space, not their explicit forms. Such dot-product is 
called kernel denoted G >$ , >′ and it is calculated in using vectors in the 
input space (not feature space!):

G >$ , >′ = Φ >$ 1
Φ >′

= >′ =$

$%!

/!"
)$G >$ , >′
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Kernel-based machine learning

This is a kernel-based machine learning function.

Kernel trick allows us to use tools of linear regression for data nonlinear in 
the input space by converting variables into (higher dimensional) feature 
space.

= >′ =$

$%!

/!"
)$G >$ , >′

Q: How to find the regression coefficients -?
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Kernel-based machine learning

We can find the coefficients _ using the method of least squares, where 
coefficients are fit to get the minimum residual sum of squares (RSS) with 
respect to the training set with Jtr reference values y:

arg min5$
$%!

/
tr

= >$; _ − P$ &

This is a kernel-based machine learning function.

Kernel trick allows us to use tools of linear regression for data nonlinear in 
the input space by converting variables into (higher dimensional) feature 
space.

= >′ =$

$%!

/!"
)$G >$ , >′
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Kernel-based machine learning

arg min5$
$%!

/
tr

= >$; _ − P$ &

Q R =$

$%!

/!"
= >$; _ − P$ &

Q R = `_ − T
1
`_ − T

` =

G >!, >! ⋯ G >!, >/tr
⋮ ⋱ ⋮

G >/tr , >! ⋯ G >/tr , >/tr

= >$ =$

.%!

/!"
).G >$ , >.

Kernel matrix

Q R =$

$%!

/
tr

$

.%!

/!"
).G >$ , >. − P$

&
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Kernel-based machine learning
Kernel matrix
(matrix measuring similarities 
between points – here cosine)

cos b = c d I/ c I  

Max Pinheiro Jr, P. O. Dral, Kernel methods. In Quantum Chemistry in the Age of Machine 
Learning, P. O. Dral, Ed. Elsevier: 2023, Paperback ISBN: 9780323900492
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Kernel-based machine learning

arg min5$
$%!

/
tr

= >$; _ − P$ &

Q R = `_ − T
1
`_ − T

WQ _

W_
= f`

1
`_ − T = f` `_ − T = f``_ − f`T = Y

``_ = `T

`
36
``_ = `

36
`T

`_ = T

_ = `
36
T
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Kernel-based ML vs linear regression

If the kernel function is itself a dot-product:

This is a kernel-based machine learning function.

The expression becomes equivalent to the linear regression as we have 
seen above and that is why such a dot-product kernel is also called “linear 
kernel”:

G >$ , >′ = >$
1
>
#

= >′ =$

$%!

/!"
)$G >$ , >′

= >′ =$

$%!

/!"
)$G >$ , >′ = $

$%!

/!"
)$>$

1
>
#
=$

.%!

0
A.B.

#

A. =$

$%!

/!"
)$B$.
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Kernel-based machine learning

_ = `
36
T

Prone to overfitting, 
numerically unstable

Often, K is not invertible 
matrix

A. =$

$%!

/!"
)$B$.

One can get the same '* for infinite 
combinations of -!

Some solutions will have very large -! with 
opposite signs trying to compensate each 

other 

A = −0.2962 d 2 d 0.5 + ∑$%&
/tr%&-

0B$ 

A = ∑$%!
/tr%&-

)$B$ = ∑$%!
/tr%&-

)$Z$ 

A = 198476910439 d 0.5 − 19847691043.95924 d 5 + ∑$%(
/tr%&-

0B$ 

= B; A = AB = −0.2962B 
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Shrinkage methods

arg min5 `_ − T 1
`_ − T + p_

1
`_

_ = ` + pq
3!
T

arg min2 S@ − T 1
S@ − T + p@

1
@

@ = S
1
S + pq

3!
S
1
T

Ridge regression – belongs to shrinkage methods (useful for feature 
importance analysis)

Kernel ridge regression (KRR)

q =

1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1

Identity matrix

p is nonnegative regularization hyperparameter, smoothens function and 
makes solution numerically more stable.

arg min2 S@ − T 1
S@ − T + p$

$%!

0
A$

Another example of shrinkage method is the lasso

Coefficient magnitude is forced to shrunk with larger p in these methods
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Kernel-based ML with Gaussian kernel

One of the popular kernel functions is the Gaussian kernel function:

This is a kernel-based machine learning function.

It maps vectors x from J7-dimensional input space into infinite-dimensional feature space.

r is a positive hyperparameter defining the length scale of the Gaussian function.

G >$ , >. = exp −

1

2r
&$

"

/#
B$," − B.,"

&

= >′ = $

$%!

/
tr

)$G >$ , >′
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Many ML algorithms can 
give you practically ideal 
predictions for their own 
training set

Model Selection

H2 dissociation curve

R
Overfitting
High variance
Low bias

Underfitting
Low variance
High bias

Max Pinheiro Jr, P. O. Dral, Kernel methods. In Quantum Chemistry in the Age of Machine 
Learning, P. O. Dral, Ed. Elsevier: 2023, Paperback ISBN: 9780323900492
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KRR with Gaussian kernel

Figure from: M. Rupp. Int. J. Quantum Chem. 2015, 115, 1058
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KRR with Gaussian kernel: H2

= >′ =$

$%!

/!"
)$exp −

1

2r
&$

"

/#
B$," − B"#

&

Take KRR with Gaussian kernel

and consider what happens for very small σ → 0:

and consider what happens for very large σ → ∞:

= >
#
= s

)$ , for ># = >$
0, for >

#
≠ >$

P. O. Dral, Quantum Chemistry Assisted by Machine Learning. In Advances in Quantum 
Chemistry: Chemical Physics and Quantum Chemistry Volume 81, 1st ed.; Brandas, E.; Ruud, 
K., Eds. Academic Press: 2020; Vol. 81. Online tutorial: MLatom.com/AQCtutorial/

= >
#
=$

$%!

/!"
)$ = ;vwxy
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KRR with Gaussian kernel

Figure from: M. Rupp. Int. J. Quantum Chem. 2015, 115, 1058
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Model Selection

overfittingunderfitting

bias–variance 
tradeoff

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, and 
Prediction. 2nd ed.; Springer-Verlag, 2009
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Q: How to choose hyperparameters?

Model selection (hyperparameter tuning)
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Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction. 2nd ed.; Springer-Verlag, 2009

Train

ValidateSub-training set tuning 
parameters 

We target minimal error not in the training set,
but in the validation set for models trained on 
the sub-training set.

Model selection (hyperparameter tuning)
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Kernel-based model with Gaussian kernel

H2 dissociation curve

Full CI calculations:
more than 30 min
for one value of R.

ML trained on 20 points needs 
less than 1 sec.
for hundreds of other points

P. O. Dral, Quantum Chemistry Assisted by Machine Learning. In Advances in Quantum 
Chemistry: Chemical Physics and Quantum Chemistry Volume 81, 1st ed.; Brandas, E.; Ruud, 
K., Eds. Academic Press: 2020; Vol. 81. Online tutorial: MLatom.com/AQCtutorial/
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Training set with randomly shuffled items

5-fold Cross-validation
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Training set with randomly shuffled items

valid.sub-training set

5-fold Cross-validation
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Minimize cross-validation error

Training set with randomly shuffled items

valid.sub-training set

5-fold Cross-validation
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Model Selection

Figure by Dan Kernler [CC BY-SA 4.0], from Wikimedia Commons

Random sampling for 
model selection is
not always a good idea

Sometimes,
stratification is 
preferable
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Model Evaluation
(estimation of the generalization error)
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• Often ML error for its own training set is close to zero

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction. 2nd ed.; Springer-Verlag, 2009

Train

ValidateSub-training set tuning 
parameters 

ML: Error Estimation



dr
-d
ra
l.c
om

108

• Often ML error for its own training set is close to zero
• Using errors in the validation set would be also incorrect, because their minimization is a 

part of the training process

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction. 2nd ed.; Springer-Verlag, 2009

Train

ValidateSub-training set tuning 
parameters 

ML: Error Estimation
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• Often ML error for its own training set is close to zero
• Using errors in the validation set would be also incorrect, because their minimization is a 

part of the training process
• We should estimate errors on a 

completely independent test set

Hastie, Tibshirani, Friedman, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction. 2nd ed.; Springer-Verlag, 2009

Train

ValidateSub-training set tuning 
parameters 

Test

ML: Error Estimation
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5-fold Cross-validation

Calculate cross-validation error

Entire set with randomly shuffled original data

testtrain   
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Minimize cross-validation error

Training set with randomly shuffled items

valid.sub-training set

5-fold Cross-validation
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Family of kernel methods

Max Pinheiro Jr, P. O. Dral, Kernel methods. In Quantum Chemistry in the Age of Machine 
Learning, P. O. Dral, Ed. Elsevier: 2023, Paperback ISBN: 9780323900492
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• Kernel ridge regression (KRR)

• Gaussian processes (GP, kriging)

• Support vector machines (SVM)

KRR and other kernel methods

= >′ =$

$%!

/!"
)$G >$ , >′

= >′ =$

$%!

/!"
)$G >$ , >′

= >′ =$

$%!

/!"
)$P$G >$ , >′ , 0 < )$< {

Prediction 
functions are 
the same for 
KRR and GP!

Max Pinheiro Jr, P. O. Dral, Kernel methods. In Quantum Chemistry in the Age of Machine 
Learning, P. O. Dral, Ed. Elsevier: 2023, Paperback ISBN: 9780323900492
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• Kernel ridge regression gives the same prediction as Gaussian 
processes:

• Gaussian processes also provide:
• variance V

• Marginal likelihood:

Rasmussen, Williams, Gaussian Processes for Machine Learning. The MIT Press: Boston, 2006

|′ =

G >!, >′
⋮

G >/tr , >′

= >′ =$

$%!

/!"
)$G >$ , >′

} >′ = G >′, >′ − |
#1
` + pq

3!
|′

log � y Å = −

1

2
T
1
_ −

1

2
log ` + pq −

J89
2
log 2+

Hyperparameters in kernel function can be found by optimizing log 
marginal likelihood, for which derivatives are taken, e.g. :;<= 0 y Å, r:>

KRR and other kernel methods
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Advantages of kernel methods:
• Nonparametric models, i.e., do not assume a specific behavior of data 

(compare to parametric model such as linear regression)
• Explicitly incorporate training data, thus very flexible and accurate
• Closed (analytical) solution, i.e. fast training

Disadvantages:
• Slow training for lots of training data (scales as Ç J89( )
• Requires lots of RAM to store the kernel matrix (scales as Ç J89& )
• Prediction time slows down with more training data (scales as Ç J89! )

Pros & cons of kernel methods

= >′ =$

$%!

/!"
)$G >$ , >′

_ = ` + pq
3!
T

P. O. Dral, Quantum Chemistry Assisted by Machine Learning. In Advances in Quantum 
Chemistry: Chemical Physics and Quantum Chemistry Volume 81, 1st ed.; Brandas, E.; Ruud, 
K., Eds. Academic Press: 2020; Vol. 81. Online tutorial: MLatom.com/AQCtutorial/
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Pros & cons of kernel methods

P. O. Dral, Quantum Chemistry Assisted by Machine Learning. In Advances in Quantum 
Chemistry: Chemical Physics and Quantum Chemistry Volume 81, 1st ed.; Brandas, E.; Ruud, 
K., Eds. Academic Press: 2020; Vol. 81. Online tutorial: MLatom.com/AQCtutorial/
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Solutions:
• Reduce the training set by selecting the most relevant 

points[1,2]
• Sparsification techniques[3]
• Construct high-dimensional kernels as products of one-

dimensional kernels[4]

See, for example:
[1] Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108
[2] Hu, Xie, Li, Li, Lan, J. Phys. Chem. Lett. 2018, 9, 2725
[3] Bartók, Csányi, Int. J. Quantum Chem. 2015, 115, 1051
[4] Unke, Meuwly, J. Chem. Inf. Model. 2017, 57, 1923

Kernel Ridge Regression



dr
-d
ra
l.c
om

118

Neural networks
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ML algorithms

= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Kernel ridge regression (KRR) Neural networks (NN)

Quantum Chemistry in the Age of Machine Learning. Ed. P. O. Dral. Elsevier: Amsterdam, 
Netherlands, 2023.
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ML algorithms

= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Kernel ridge regression (KRR) Neural networks (NN)

Quantum Chemistry in the Age of Machine Learning. Ed. P. O. Dral. Elsevier: Amsterdam, 
Netherlands, 2023.
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ML algorithms

ÉP = = >;Ñ, 9 = 9 + Ö!B! + Ö&B& +⋯+Ö0B0 = >
1
Ñ+ 9 

Linear regression

Neural networks (NNs): the single hidden layer, feed-forward network

ÉP = = >; _, c,Ñ, 9 = 9 + Ö!ℎ! >; _!, 2! +⋯+Ö?ℎ? >; _? , 2? = á
1
Ñ+ 9 

ℎ@ >; _@, 2@ = à 2@ + )@!B! + )@&B& +⋯+ )@0B0 = à >
1
_@ + 2@

P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

ÉP = = >; _, c,Ñ, 9 = =
&
á;Ñ, 9 = =

&
=
!
>  

à â = exp −2 â − ;
&

Activation functions:

radial basis function (RBF)
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Neural network (NN)

The single hidden layer, 
feed-forward NN

NN consists of
• layers
• nodes=units=neurons

Ñ,_…weights

a, b… biases

= >; _, c,Ñ, 9 = =
&
á;Ñ, 9
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

ML algorithms

ÉP = = >;Ñ, 9 = 9 + Ö!B! + Ö&B& +⋯+Ö0B0 = >
1
Ñ+ 9 

Linear regression

Neural networks (NNs): the single hidden layer, feed-forward network

ÉP = = >; _, c,Ñ, 9 = 9 + Ö!ℎ! >; _!, 2! +⋯+Ö?ℎ? >; _? , 2? = á
1
Ñ+ 9 

ℎ@ >; _@, 2@ = à 2@ + )@!B! + )@&B& +⋯+ )@0B0 = à >
1
_@ + 2@

à â = exp −2 â − ;
& radial basis function (RBF)

à is the activation function. If:
• à is the identity function, NN is equivalent to linear regression

• Typically, à is used for the nonlinear transformation making the NN flexible

à â = â

à 2@ + )@!B! + )@&B& +⋯+ )@0B0 = 2@ + )@!B! + )@&B& +⋯+ )@0B0
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P. O. Dral, A. Kananenka, F. 
Ge, B.-X. Xue, Neural 
Networks. In Quantum 
Chemistry in the Age of 
Machine Learning, 1st ed.; 
P. O. Dral, Ed. Elsevier: 
2023.
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Activation functions
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Activation functions



dr
-d
ra
l.c
om

127
P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Neural network (NN)

The single hidden layer, 
feed-forward NN

NN consists of
• layers
• nodes=units=neurons

Ñ,_…weights

a, b… biases

= >; _, c,Ñ, 9 = =
&
á;Ñ, 9
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Training NNs

To train NN means to find its weights ã usually by solving this minimization 
task:

arg minA$
$%!

/
tr

= >$; ã − P$ &

arg minA$
$%!

/
tr

= >$; ã − P$ &
+ p$

.%!

/p
b.
&

To avoid overfitting this solution can be regularized using weight decay 
approach (recall ridge regression and KRR):

ÉP = = >; _, c,Ñ, 9 = 9 + Ö!ℎ! >; _!, 2! +⋯+Ö?ℎ? >; _? , 2? = á
1
Ñ+ 9 

ℎ@ >; _@, 2@ = à 2@ + )@!B! + )@&B& +⋯+ )@0B0 = à >
1
_@ + 2@

ã = Ñ, _, a, b
parameters
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P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Training NNs

To train NN means to find its weights ã usually by solving this minimization 
task:

arg minA$
$%!

/
tr

= >$; ã − P$ &

arg minA$
$%!

/
tr

= >$; ã − P$ &
+ p$

.%!

/p
b.
&

To avoid overfitting this solution can be regularized using weight decay 
approach (recall ridge regression and KRR):

ÉP = = >; _, c,Ñ, 9 = 9 + Ö!ℎ! >; _!, 2! +⋯+Ö?ℎ? >; _? , 2? = á
1
Ñ+ 9 

ℎ@ >; _@, 2@ = à 2@ + )@!B! + )@&B& +⋯+ )@0B0 = à >
1
_@ + 2@

ã = Ñ, _, a, b
parameters

In contrast to linear regression and kernel methods, closed solution is unknown



dr
-d
ra
l.c
om

130
P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Training NNs: Issues

Issues with NNs:

Solutions are unstable and difficult to find.

Computationally expensive optimization problem should be solved and it 
therefore often can be speed up by using GPUs instead of CPUs.

GPUs are however much more expensive and difficult to get and optimization 
is still quite slow.

One of the popular approaches for fitting is back-propagation.

In contrast to linear regression and kernel methods, no closed solution exists



dr
-d
ra
l.c
om

131
P. O. Dral, A. Kananenka, F. Ge, B.-X. Xue, Neural Networks. In Quantum Chemistry in the 
Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Back-propagation:

Q ã =$

$%!

/
= >$; ã − P$ &

bB
9C!

= bB
9
− å

:D A
:E$

 

gradient descent update with learning rate å

Q ã = ∑$%!
/

Q$ = ∑$%!
/

= >$; ã − P$ & 

Well parallelized:

The training set is often split into the minibatches (batches) 

Update of parameters after the sweep over the entire training set is called an epoch. 

Training NNs



dr
-d
ra
l.c
om

132
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Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Issues with NNs:

Overfitting, regularization 
methods to deal with it:

• weight decay

arg minA$
$%!

/tr
= >$; ã − P$ &

+ p$

.%!

/p
b.
&

• early stopping
• data augmentation

Training NNs
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Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Training NNs: Issues

Issues with NNs:

• Input values should be scaled, usually standardized to center the inputs 
and scale them so that their standard deviation is 1 (Z-score 
normalization)

• It is also important to center reference data
• Number of hidden layers and units should be adjusted often by manual 

experimentation
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Age of Machine Learning, 1st ed.; P. O. Dral, Ed. Elsevier: 2023.

Training NNs: Issues

Issues with NNs:

• Initial guess of weights strongly influences the final parameter values
• Starting with zero values prevents back-propagation algorithm to find 

better solutions
• Starting with too large values often leads to large generalization errors
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Issues with NNs:

• Initial guess of weights strongly influences the final parameter values
• Starting with zero values prevents back-propagation algorithm to find 

better solutions
• Starting with too large values often leads to large generalization errors

Thus, one can get lot of different NNs fitted on the same data!

One can exploit this:
• Take average of multiple NNs to get more stable prediction
• Use deviation between NN predictions to estimate prediction uncertainty 

(e.g. useful in active learning)

Training NNs: Issues
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Active learning with several NNs

M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 2017, 8, 6924
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Deep learning

Deep learning is based on neural networks (NN) with large depth (for 
feed-forward neural network – more than one hidden unit) in contrast 
to shallow neural network

Some of other types of neural networks:
• Convolutional networks
• Recurrent neural networks
• Autoencoders
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The NN zoo

Figure from https://www.asimovinstitute.org/neural-network-zoo/
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Parametric vs nonparametric 

algorithms
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Comparison of KMs and NNs

What method to choose?
Kernel methods or neural networks?
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Some of the ML Algorithms

f(x; parameters)

= >$; @ = A- + A!B$! +A&B$& +⋯

Linear regression

Number of parameters is fixed: parametric model

Neural networks are also parametric models

Kernel ridge regression (KRR)

= >$; D =$

.%!

/
tr

).G >$ , >.; I

Number of parameters depends on number of training points:
nonparametric model, e.g. KRR
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All have some advantages and disadvantages, 
but often provide results with similar 
accuracy.

In many cases it is not possible to claim 
that one fitting method is better than 
another. The choice will depend on 
experience and taste.[1]

[1] Manzhos, Dawes, Carrington, Int. J. Quantum Chem. 2015, 115, 1012

Some of the ML Algorithms
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However: You should be aware of the law of the hammer and 
do not try to use a hammer for every problem only because you 
already have a hammer.

Source: Wikipedia

Some of the ML Algorithms


