

XACS平台介绍(II):基于 XACS平台的计算化学(使用 MLatom进行几何构型优化)

Pavlo O. Dral Xiamen University, P.R. China

Visiting Professor in Nicolaus Copernicus University, Poland dr-dral.com

2 July 2024

XACS平台介绍(II):基于 XACS平台的计算化学(使用 MLatom进行几何构型优化)

Pavlo O. Dral Xiamen University, P.R. China

Visiting Professor in Nicolaus Copernicus University, Poland dr.dral.com

2 July 2024

Pavlo O. Dral

AI in computational chemistry

Professor | Outstanding Youth (Overseas) Email: dral@xmu.edu.cn

Research Areas: artificial intelligence, quantum chemistry, dynamics, excited states, MLatom.com semi-empirical methods

2024-Present: Nicolaus Copernicus University, Visiting Professor

- 2021-Present: Xiamen University, Full Professor
- 2019-2021: Xiamen University, Associate Professor
- 2013-2019: Max-Planck-Institut für Kohlenforschung, Postdoc
- 2010-2013: University of Erlangen-Nürnberg, M.Sc. & Ph.D.
- 2008-2010: University of Erlangen-Nürnberg, M.Sc.

2004-2010: National Technical University of Ukraine "KPI", B.Sc. & M.Sc.

Research Interests:

Our research transforms chemical physics simulations by developing novel AI methods and providing software and cloud computing platforms.

Group website: dr-dral.com

✓ Selected papers:

Al platform: J. Chem. Theory Comput. 2024, 20, 1193 Al-quantum dynamics: Nat. Commun. 2022, 13, 1930 Al-quantum mechanics: Nat. Commun. 2021, 12, 7022 Al-excited states: Nat. Rev. Chem. 2021, 5, 388 Al force fields: Chem. Sci. 2021, 12: 14396

QUANTUM CHEMISTRY

MACHINE LEARNING

IN THE AGE OF

Group & Acknowledgements

2024

Learning materials

S XACS Cloud		Testimonials:	
Cloud Computing	Courses	"Dr. Dral ofters a fan to the concepts arour in chemistry!"	tastic introduction nd machine learning
 (↑) Job Submitter 	For teachers: Your course car	n be here!	
		Computational	
File Manager	17月12字 ラスエ 智能	chemistry & Al	We open both courses for free for the workshop
Jupyter Lab	计算化学和人工智能迷你课程 作者: Pavlo O.Dral	Hands-on course on computational chemistry and	participants! Recommend them further!
Software	< 发布日期: 2024年6月14日	artificial intelligence (AI) by Pavlo O. Dral	
[➡] Download	Go	Go	R.
Learning			ar-dral.con

[2]

Courses

Learning materials

XACS Cloud EDITED BY PAVLO O. Courses Cloud Computing QUANTUM CHEMISTRY Job Submitter More valuable IN THE AGE OF MACHINE LEARNING Terminal Computational 65 authors File Manager 27 chapters chemistry & Al 鬥 Job Manager Hands-on course on $\mathbf{\tilde{\mathbf{C}}}$ Jupyter Lab computational chemistry and artificial intelligence (AI) by Software Pavlo O. Dral • Download Living + tutor dr-dral.com (regularly updated) Learning Coming Soon

Open source (on github, pip install...); also run on XACScloud.com

Have it your way...

P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr, Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. J. Chem. Theory Comput. 2024, 20, 1193

AI-enhanced computational chemistry

10

Updated based on: P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr, Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. JCTC 2024, 20, 1193

11

P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr, Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. *J. Chem. Theory Comput.* **2024,** *20*, 1193

Surface-hopping dynamics

XACS

(iamen Atomistic XACScloud.com

L. Zhang, M. Martyka, ..., J. Jankowska, M. Barbatti, P. O. Dral. JCTC, 2024, 20, 5043–5057

MLatom's interfaces

A Package for Quantum Dissipative Dynamics with Machine Learning by Arif Ullah, Anhui University

[MLQD: A. Ullah, P. O. Dral. *Comput. Phys. Commun.* **2024**, 294, 108940]

Semi-empirical quantum chemical programs:

Machine learning programs:

Dynamics and other atomistic simulation:

Not everything is available on the cloud...

 □ 2020 □ 2020	Python API	Cloud Computing	
使用	对于KREG模型,我们可以使用简单的网格搜索优化	Job Submitter	
⊞ MACE势:	<pre>model = ml.models.kreg(model_file=f'kreg.npz')</pre>	Terminal	Job Information
(p)KREG势 基准测试	<pre>sub, val = molDB.split(number_of_splits=2, fract</pre>	Eile Manager	* Job Name 2024-05-30_0757
Transfer learning	<pre>model.nyperparameters['sigma'].minval = 2**-5 # model.optimize_hyperparameters(subtraining_molec</pre>		Job Location from_job_submitter
AIQM1 Quantum chemical methods 还用机器类习描型	hyperparameters= training_kwargs= prediction_kwarg lmbd = model_byperparameters['lambda'l_yalue :	Job Manager	Job Type O XACS (auto detect)
更多教程	<pre>valloss = model.validation_loss print('Optimized sigma:', sigma) print('Optimized lambda:', lmbd)</pre>		Gaussian Mlatom_d
输入文件/命令行的使用手册 概览 模拟	<pre>print('Optimized validation loss:', valloss) # Train the model with the optimized hyperparame model.train(molecular_database=molDB, property_f # Train the model with the optimized hyperparame model.train(molecular_database=molDB, property_f)</pre>	Download	Input File
学习	输出如下所示(它可能随子训练集和验证集的随机-	Learning	1
DYTHON接口手册	Optimized sigma: 0 10511205190671434	Courses	
概览	Optimized lambda: 2.910383045673381e-11 Optimized validation loss: 3.1550365181164988e-0) Workshops	
Data		Statistics	
Models	其他参数也是可用的,例如SciPy(Nelder-Mead , Br	Contract CPU time used	
Simulations	<pre>krylov , trust-exact)和hyperopt库(TPE)。</pre>	4756h 1m	

P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

AI is a game changer

Figure: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

Zoo of machine learning potentials

XACS

Xiamen Atomistic Computing Suite XACScloud.com

XACS Xiamen Atomistic Computing Suite XACScloud.com

Adapted from animation by Arif Ullah

XACS Xiamen Atomistic Computing Suite XACScloud.com XACS

Physics-informed active learning

XACS

Xiamen Atomistic Computing Suite **XACScloud.com**

Accurate vibrational spectra

23

Y.-F. Hou, L. Zhang, Q. Zhang, F. Ge, P. O. Dral. arXiv:2404.11811.

Time-resolved mechanisms

Y.-F. Hou, Q. Zhang, P. O. Dral. <u>https://doi.org/10.26434/chemrxiv-2024-hwsl4</u>.

XACS Xiamen Atomistic Computing Suite XACScloud.com XACS

XACS Universal models (no training needed) (ACScloud.com MLatom.com P. O. Dral, M. Barbatti, Nat. Rev. Chem. 2021, 5, 388 Ab initio ML ab initio Quantum Chemistry $H\Psi = E\Psi$ DM21, CF22D, DENS24... DFT ML-DFT Timing AIQM1: P. Zheng, R. Semi-Zubatyuk, W. Wu, O. Isayev, ML-SQC AIQM1 P. O. Dral, Nat. Commun. empirical **2021**, *12*, 7022 Machine Learning ANI-1ccx, AIMnet-2, Molecular ANI-1xnr, ... Mechanics dral.com

26

Accuracy

Figure: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

XACS Xiamen Atomistic Computing Suite XACScloud.com

.dral.com

28

T. A. Schaub, A. Zieleniewska, R. Kaur, M. Minameyer, W. Yang, C. M. Schüßlbauer, L. Zhang, M. Freiberger, L. N. Zakharov, T. Drewello, P. O. Dral, D. Guldi, R. Jasti. Tunable Macrocyclic Polyparaphenylene Nanolassos via Copper-Free Click Chemistry. *Chem. Eur. J.* **2023**, *29*, e202300668

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479

Path-integral MD

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

XACS Xiamen Atomistic Computing Suite XACScloud.com XACSC

Α

IQM1 also predicts fluorescence quenching	Table S9. Emission energy and oscillator strengths f of free molecules and their complexes with C ₆₀ and C ₇₀ at AIQM1/CIS in vacuum (S ₁ to S ₀ transition).			
	Species	f	Energy (eV)	
TL IT	3	0.750	3.11	
	4	0.751	3.12	
	5	0.750	3.12	
	6	0.750	3.12	
	7	0.748	3.12	
	3 ⊃ C ₆₀	0.000	2.58	
	$4 \supset C_{60}$	0.000	2.58	
	$5 \supset C_{60}$	0.000	2.58	
CPP-R···C ₆₀	$6 \supset \mathbf{C}_{60}$	0.000	2.58	
	$7 \supset C_{60}$	0.000	2.59	
	M-3⊃ C ₇₀	0.000	2.10	
	$M-4 \supset C_{70}$	0.000	2.09	
	$M-5 \supset C_{70}$	0.000	2.10	
	$M-6 \supset C_{70}$	0.000	2.10	
	M-7 ⊃ C ₇₀	0.000	2.10	

AIQM1 can be useful for aggregation-induced emission, photocatalysis

T. A. Schaub, A. Zieleniewska, R. Kaur, M. Minameyer, W. Yang, C. M. Schüßlbauer, L. Zhang, M. Freiberger, L. N. Zakharov, T. Drewello, P. O. Dral, D. Guldi, R. Jasti. Tunable Macrocyclic Polyparaphenylene Nanolassos via Copper-Free Click Chemistry. *Chem. Eur. J.* **2023**, *29*, e202300668

AIQM1 surface-hopping dynamics

L. Zhang, M. Martyka, ..., J. Jankowska, M. Barbatti, P. O. Dral. JCTC, 2024, 20, 5043–5057

Surface-hopping dynamics

XACS

(iamen Atomistic XACScloud.com

L. Zhang, M. Martyka, ..., J. Jankowska, M. Barbatti, P. O. Dral. JCTC, 2024, 20, 5043–5057

M. Martyka, L. Zhang, Y.-F. Hou, M. Barbatti, P. O. Dral*, et al. unpublished

Figure: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

36

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

39

Can we do better?

Figure: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. *Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models*. **2024**, *submitted*. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

ar-dral.com

UAIQM: Universal and Updatable AI-QM models

42

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. https://doi.org/10.26434/chemrxiv-2024-604wb.

UAIQM: Universal and Updatable AI-QM models

XACS

kiamen Atomistic Computing Suite (ACScloud.com

43

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. *Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models*. **2024**, *submitted*. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

XACS **UAIQM: Universal and Updatable AI-QM models**

kiamen Atomistic (ACScloud.com

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

XA 基十 化学 (使用 XACS-MLatom进行几何构型优化)

Pavlo O. Dral Xiamen University, P.R. China

Visiting Professor in Nicolaus Copernicus University, Poland dr.dral.com

2 July 2024

Search docs

CONTENTS:

1. Getting started: geometry optimization

INTERMOLECULAR INTERACTION

- 1. Documentation of GAMESS-US Input
- 2. Practice in energy decomposition analysis with XEDA
- 3. Practice with BLW
- 4. Practice in energy decomposition analysis with SAPT

VALENCE BOND THEORY

- 1. The Understanding of H₂
- 2. Computing of F_2
- 3. Resonance in C_6H_6
- 4. Computing of O_2
- 5. Computing of post-VBSCF methods
- 6. Computing of diabatic states with VB theory
- 7. Menshutkin Reaction $NH_2 + CH_2CI \rightarrow [NH_2CH_2]^+ + CI^-$

MLatom.com

dr-dral.com

B3LYP/6-31G geomopt xyzfile='5	*	number of aton	15		2
	blank line				
C 0	.000000000	0.0000000000	0.00	00000000	
Η 1	.0870000000	0.0000000000	0.00	00000000	
Н -0	B3LYP/6-31G*				
Н -0	geomopt				
H -0	xyzfile='5				
	C 0.000	0000000	0.0000000000	0.000000000	
	Η 1.087	00000 0 0	0.0000000000	0.000000000	
	Н -0.362	333 3 220 -	1.0248334322	-0.000000000	
	H -0.362	333 3 220	0.5124167161	-0.8875317869	
	Н -0.362	3333220	0.5124167161	0.8875317869	
	2 H 0 0 0				
	H 0 0 0.7	B31 VP/6-316*			
	1	geomont			
		xyzfile=myinit	coords.xyz		

dr.dral.com

Name	
optgeoms.xyz	file with optimized geometries
	output file
opttraj1.xyz	optimization trajectory in xyz format
opttraj1.json	optimization trajectory in json format
∃ dftd4.json	
☐ dftd4.txt	
predict1.xyz	
XYZfile_1d6667.xyz	
2024-07-01_1849.err	
🖹 slurm-1724581.out	1.com
2024-07-01_1849.inp	dr-dra 52

