

Pavlo O. Dral Xiamen University, P.R. China

Universal ML models

Visiting Professor in Nicolaus Copernicus University, Poland dr.dral.com

4 July 2024

XACS Docs

- 2. Computing of ${\rm F_2}$
- 3. Resonance in $\mathsf{C}_6\mathsf{H}_6$
- 4. Computing of O_2
- 5. Computing of post-VBSCF methods
- 6. Computing of diabatic states with VB theory
- 7. Menshutkin Reaction $NH_3 + CH_3CI \rightarrow [NH_3CH_3]^+ + CI^-$
- 8. Charge-shift bonding in propellane

MACHINE LEARNING

- 1. Machine learning basics
- 2. ML for PES
- 3. Universal machine learning models
 - 3.1. What are the universal ML models?
 - 3.2. Frequencies and thermochemistry
 - 3.3. Uncertainty quantification
 - 3.4. Qualitative problems with PES shape
 - 4. Spectroscopy

者 / 3. Universal machine learning models

3. Universal machine learning models

- What are the universal ML models?
- Frequencies and thermochemistry
- Uncertainty quantification

3.1. What are the universal ML models?

Y. Chen, Y.-F. Hou, O. Isayev, P. O. Dral. Universal and Updatable Artificial Intelligence-Enhanced Quantum Chemical Foundational Models. 2024, submitted. <u>https://doi.org/10.26434/chemrxiv-2024-604wb</u>.

3

Can we do better?

Figure: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

Machine learning in quantum chemistry

Perspective: P. O. Dral, J. Phys. Chem. Lett. 2020, 11, 2336

dr. dral.com

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

Improving Hamiltonian

P. O. Dral, O. A. von Lilienfeld, W. Thiel, J. Chem. Theory Comput. 2015, 11, 2120

Multi-fidelity data: Δ-learning

.dral.com

Δ-learning: R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, J. Chem. Theory Comput. **2015**, 11, 2087

Figure: Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue, Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond. In *Quantum Chemistry in the Age of Machine Learning*, Pavlo O. Dral, Ed. Elsevier: **2023**. Paperback ISBN: 9780323900492

XACS Xiamen Atomistic Computing Suite XACScloud.com

Hierarchical ML for CH₃Cl PES

P. O. Dral, A. Owens, A. Dral, G. Csányi, J. Chem. Phys. 2020, 152, 204110

Figures: Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue, Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond. In *Quantum Chemistry in the Age of Machine Learning*, Pavlo O. Dral, Ed. Elsevier: **2023**. Paperback ISBN: 9780323900492

Ground-state geometries

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, *Nat. Commun.* **2021**, *12*, 7022

Revising DFT & X-ray geometries

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

XACS Xiamen Atomistic Computing Suite XACScloud.com XACS

MLatom.com

.al.com

T. A. Schaub, A. Zieleniewska, R. Kaur, M. Minameyer, W. Yang, C. M. Schüßlbauer, L. Zhang, M. Freiberger, L. N. Zakharov, T. Drewello, P. O. Dral, D. Guldi, R. Jasti. Tunable Macrocyclic Polyparaphenylene Nanolassos via Copper-Free Click Chemistry. *Chem. Eur. J.* **2023**, *29*, e202300668

XACS AIQM1 investigation of cycloparaphenylenes Xiamen Atomistic Computing Suite XACScloud.com

.dral.com

15

CPP-R····C7 -41.9...-38.3 kcal/mol

15 CPU-minutes

30 CPU-minutes

T. A. Schaub, A. Zieleniewska, R. Kaur, M. Minameyer, W. Yang, C. M. Schüßlbauer, L. Zhang, M. Freiberger, L. N. Zakharov, T. Drewello, P. O. Dral, D. Guldi, R. Jasti. Tunable Macrocyclic Polyparaphenylene Nanolassos via Copper-Free Click Chemistry. Chem. Eur. J. 2023, 29, e202300668

Example ML-uni-1. Calculate the bond length in H₂ and H₂O molecules with ANI-1ccx and AIQM1 (you can try UAIQM if you want!).

Check:

- method you used
- bond length (and angle for H₂O) you obtained
- how much time it took to complete the calculations

AIQM1 and ANI-1ccx are approaching CCSD(T)/CBS but AIQM1 \neq ANI-1ccx \neq CCSD(T)/CBS!

Any ML model might have limitations (like QM models too). Hence, always pay attention and use your expertise to check whether results are reasonable:

- other high-level QM calculations (can be unavailable or expensive)
- compare to experiment (maybe not reliable either!)
- check uncertainty (easiest and often works)

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods

Peikun Zheng, Wudi Yang, Wei Wu, Olexandr Isayev,* and Pavlo O. Dral*

Uncertainty quantification may also help in the systematic improvement of such data-

driven methods.

Number of atoms

After geometry optimization, the next step is to calculate frequencies

Example ML-uni-2. Calculate frequencies in H₂, H₂O, and vinylacetylene molecules with ANI-1ccx.

vinylacetylene

Report:

- Are your optimized geometries true minima?
- What are the heats of formation?
- Is any of the calculations uncertain?

freq

Request frequency and thermochemistry calculations

ANI-1ccx

XYZfile=h2_opt.xyz # file with optimized geometry

Creation of the initial XYZ geometry of vinylacetylene takes time. We do provide you with the initial guess, but what is a faster way to get XYZ geometry for a new molecule?

vinylacetylene

\$

I'm sorry, but the term "xyz geometry" is not specific enough for me to provide a precise answer. The "xyz" notation typically refers to the Cartesian coordinates of atoms in a molecule, specifying their positions in three-dimensional space. However, it doesn't specify the molecular geometry or bond angles.

Vinylacetylene is a compound with the chemical formula C_4H_4 . It consists of a vinyl group (CH₂=CH-), which is an alkene, attached to an acetylene group (C=CH). The molecular geometry of vinylacetylene can be described based on the arrangement of its atoms.

In the vinyl group, the carbon atoms are sp² hybridized, forming a planar structure with bond angles of approximately 120 degrees. The acetylene group consists of two sp hybridized carbon atoms, which are linearly arranged with a bond angle of 180 degrees.

Overall, vinylacetylene has a linear molecular geometry due to the linear arrangement of the acetylene group. However, it's important to note that the actual molecular structure can be influenced by other factors such as steric effects or conjugation, which may slightly deviate from the idealized geometric description.

I apologize, but as an AI text-based model, I don't have access to real-time data or the ability to perform calculations. Therefore, I don't have the specific XYZ coordinates for the atoms in the vinylacetylene molecule.

To obtain the XYZ coordinates for vinylacetylene, you would typically need to use computational methods such as quantum chemical calculations or obtain experimental data from techniques like X-ray crystallography or spectroscopy.

If you have access to molecular modeling software or databases, you can input the chemical structure of vinylacetylene and generate the XYZ coordinates. Alternatively, you can consult research articles or databases that provide such information for vinylacetylene.

Certainly! Here's an initial guess for the internal coordinates of vinylacetylene:

Assuming the vinylacetylene molecule is in a planar conformation, we can assign the following internal coordinates:

- Bond lengths:
 - C1=C2 (vinyl group): A typical value for a C=C double bond is around 1.34 Å.
 - C2-C3 (vinyl group): A typical value for a C-C single bond is around 1.54 Å.
 - C3-C4 (acetylene group): A typical value for a C-C triple bond is around 1.20 Å.
 - C4=H5 (acetylene group): A typical value for a C-H bond is around 1.09 Å.
- Bond angles:
 - C1=C2-C3 (vinyl group): Assuming a planar conformation, the bond angle can be approximately 120 degrees.
 - C2-C3-C4 (vinyl-acetylene connection): Assuming a planar conformation, the bond angle can be approximately 180 degrees.
 - C3-C4=H5 (acetylene group): Assuming a linear conformation, the bond angle can be approximately 180 degrees.
- Dihedral angle:
 - C1-C2-C3-C4: Assuming a planar conformation, the dihedral angle can be initially set at 0 degrees.

Please note that these are initial estimates and can vary based on the actual molecular structure, which would be best determined through accurate computational methods or experimental techniques.

S

G Certainly! Here's an example of a Gaussian input file (Gaussian 09 format) that includes the initial guess of internal coordinates for vinylacetylene: Copy code %chk=vinylacetylene.chk # opt freq b3lyp/6-31g(d) geom=connectivity Title C1 C2 H4 C3 C2 C3 C1 C4 H5 C1C2 С3 C2 С3 C4 C4 H5 C1=C2-C3 C2-C3-C4 C3-C4=H5

In this input file

Ġ Regenerate response

Geometry for (1-Buten-3-yne) ¹A' C1

1910171554 InChI=1S/C4H4/c1-3-4-2/h1,4H,2H2 INChIKey=WFYPICNXBKQZGB-UHFFFA

CCSD(T)/6-31G*

Point group is \mathbf{C}_1

]	Inte	rnal				Principal						
Alo		x (<i>A</i>	Å)	у ((Å)	A) z			a (Å)	b (Å)	c (Å)				
C1		-0.64	171	0.5	0.5025 0.0		0000		-0.6451	0.5050	0.000	0			
C2		0.73	370	0.1	141	-0.	0000		0.7374	0.1113	-0.000	0			
C3		-1.66	559	-0.3	822	-0.	0000		-1.6674	-0.3757	-0.000	0			
C4		1.9241		-0.1	1712 -0.		0000		1.9234	-0.1786	-0.000	0			
H5		-0.85	537	1.5	746	0.	0000		-0.8476	1.5779	0.000	0			
H6		-1.49	909	-1.4	569	-0.	0000		-1.4965	-1.4511	-0.000	0			
H7		-2.70)03	-0.0	434	0.	0001		-2.7005	-0.0330	0.000	1			
H8		2.95	563	-0.4	542	0.	0003		2.9546	-0.4656	0.000	3			
tab	tab delimited dump of previous table														
Aton	1 - 1	Aton	n Di	istar	ices	(Å)					_				
	0	C1 C		2	C3		C4		H5	H6	H7	H8			
C1			1.4	375	1.34	1.3493		79	1.0918	2.1334	2.1246	3.728			
C2	1.4	375			2.45	536	1.22	09	2.1 59 4	2.7261	3.4409	2.291			
C3	1.3	493	2.4	536			3. 59	62	2 2.1186	1.0889	1.0885	4.622			
C4	2.6	.6579 1.22		209	3.59	3.5962			3.2808	3.64 90	4.6262	1.070			
H5	1.0	.0918 2.1		594	94 2.1186		3.2808		3	3.0977	2.4552	4.316			
H6	2.1	2.1334 2.7		261 1.08		889 3.649		90	3.0977		1.8603	4.558			
H7	2.1246 3.4		409	409 1.088		85 4.620		2 2.4552	1.8603		5.671				
H8	3.7	282	82 2.2910 4.6228		1.07	03	4.3165	4.5589	5.6716						
Maxi	Maximum atom distance is 5.6716Å between atoms H7 and H8.														

In some cases you can find the calculated geometries online

https://cccbdb.nist.gov/exp2x.asp?casno=689974&charge=0

Vibration analysis for molecule 1

1

0.05703 kcal/mol

220.01876 kcal/mol 233.50896 kcal/mol -58.32770 kcal/mol

Multiplicity: 1

This is a nonlinear molecule

Mode	Frequencies	Reduced masses	Force Constants
	(cm^-1)	(AMU)	(mDyne/A)
1	1654.6962	1.0829	1.7470
2	3850.4309	1.0449	9.1277
3	3931.4391	1.0817	9.8508

Thermochemistry for molecule

Standard deviation of NN contribu	utic	on	:	0.00009088	Hartree
NN contribution			:	-0.00110508	Hartree
Sum of atomic self energies			:	-63.04934947	Hartree
ODM2* contribution			:	-13.33326549	Hartree
D4 contribution			:	-0.00002289	Hartree
Total energy			:	-76.38374293	Hartree
ZPE-exclusive internal energy at		0	К:	-76.38374	Hartree
Zero-point vibrational energy			:	0.02150	Hartree
Internal energy	at	0	К:	-76.36225	Hartree
Enthalpy	at	298	к:	-76.35847	Hartree
Gibbs free energy	at	298	K:	-7 6. 37988	Hartree
Atomization enthalpy	at	0	К:	0.35062	Hartree
ZPE-exclusive atomization energy	at	0	К:	0.37212	Hartree
Heat of formation	at	298	K:	-0.09295	Hartree

MLatom.com

dr-dral.com

Wall-clock time: 4.54 s (0.08 min, 0.00 hours)

MLatom terminated on 25.04.2024 at 11:15:15

Vibration analysis	for molecule	1		
Multiplicity: 1				MLatom.com
This is a linear molecule				
Mode Frequencies Reduced mass	es Force Consta	nts		The program tells
(cm^-1) (AMU)	(mDyne/A)			vourthat H_2 is uncertain!
1 3500.7003 1.0078	7.2769			Treat with caution
				near with caution
Thermochemistry fo	r molecule 1			
Standard deviation of NN contribution	• 0,00891919	Hartree	5,59688 kcal/mol	
NN contribution	-0.00210675	Hartree	5155666 Red (7 mo c	
Sum of atomic self energies	: -0.08587317	Hartree		
ODM2* contribution	: -1.09094346	Hartree		
D4 contribution	0.00000889	Hartree		
Total energy	: -1.17893227	Hartree Und	certainty quantificati	on of AIQM1 heats of formation:
		F	P. Zheng, W. Yang, W.	Wu, O. Isayev, P.O. Dral,
ZPE-exclusive internal energy at 0	К: –1.17893	Hartree	J. Phys. Chem. Lett. 2	022, 13, 3479
Zero-point vibrational energy	: 0.00797	Hartree		
Internal energy at 0	K: -1.17096	Hartree		
Enthalpy at 298	K: -1.16765	Hartree		
Gibbs free energy at 298	K: -1.18240	Hartree		
Atomization enthalpy at 0	K: 0.16920	Hartree	106.17224 kcal/mol	~
ZPE-exclusive atomization energy at 0	K: 0.17717	Hartree	111.17663 kcal/mol	L.CON
Heat of formation at 298	K: -0.00455	Hartree	–2.85652 kcal/mol	drai
* Warning * Heat of formation have high	uncertainty!			ðr- 28

Uncertainty quantification

dr-dral.com

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479

- H₂ bond length: 0.4368 Å (ANI-1ccx) 0.726 Å (AIQM1) 0.7122 Å (HF/STO-3G) 0.7415 Å (KREG & FCI/aug-cc-pV6Z) 0.7414 Å (experiment)

dr.dral.com

	====	====	===			
Thermochemis	stry	for	mo	olecule 1		
Standard deviation of NN contribu	utio	n	:	0.00008761	Hartree	0.05498 kcal/mol
NN contribution			:	0.00715111	Hartree	
Sum of atomic self energies			:	-133.90358074	Hartree	//
ODM2* contribution			:	-20.63402319	Hartree	/
D4 contribution			:	-0.00056531	Hartree	
Total energy			:	-154.53101813	Hartree	vinylacetylene
ZPE-exclusive internal energy at		0	K:	-154.53102	Hartree	Experiment:
Zero-point vibrational energy			:	0.06060	Hartree	73 kcal/mol
Internal energy	at	0	К:	-154.47042	Hartree	
Enthalpy	at	298	К:	-154.46492	Hartree	
Gibbs free energy	at	298	К:	-154.49656	Hartree	
Atomization enthalpy	at	0	к:	1.29803	Hartree	814.52617 kcal/mol
ZPE-exclusive atomization energy	at	0	к:	1.35863	Hartree	852.55199 kcal/mol
Heat of formation	at	298	к:	0.11002	Hartree	69.04119 kcal/mol 31

vinylacetylene original: 73 revised: 70.4 AIQM1: 69.1 G4: 69.1 Experiment: 73 kcal/mol theory

Heats of formation in kcal/mol

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479

r-dral.com

33

Heats of formation in kcal/mol

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479

Calculate heat of formation of H_2O with B3LYP/6-31G*.

vinylacetylene

Report:

- What is the heats of formation?
- Is this calculation uncertain?

freq # Request frequency and thermochemistry calculations
method=B3LYPG/6-31G* # Using PySCF instead of Gaussian
qmprog=pyscf
freqprog=pyscf
XYZfile=h2_opt_B3LYP.xyz # file with optimized geometry

Heats of formation

B31 VD WB97X WB97X WB97X-D4/doc									(without ANII (without our				
ODM2 16-31G* X/6-31G* TZVPP G4MP2									AIQMI AIC	QM1 Outliers)	-Toct A	NL1 _{CCX}	IJ
		1	1	1	1	1	1						
CHNO (ΔH_f) —	2.63	6.72	4.09	3.83	3.20	2.74	0.90	0.75	0.84	0.60	1.76	0.92	
BIGMOL20 (ΔH_f) —	3.97	18.92	4.40	4.37	8.01	6.01	2.40	2.16	2.30	1. 9 6	2.34	2.07	`(
CONFORMERS30 (ΔH_f) —	2.21	10.37	3.46	3.01	4.50	3.10	0.79	0.64	0.46	0.44	0.96	0.96	u
ISOMERS44 (ΔH_f) —	1.16	8.08	3.57	3.53	4.52	3.78	0.44	0.37	0.42	0.42	1.34	0.59	р
ALKANES28 (ΔH_f) —	1.15	11.17	7.07	6.26	5.12	3.06	0.59	0.53	0.97	0.24	2.67	0.65	
G2 (ΔH_f) —	2.59	4.99	4.31	4.07	2.60	2.39	0.60	0.52	0.97	0.44	2.62	0.62	
G3 (Δ <i>H</i> _f) —	2.90	8.66	3.48	3.26	4.28	3.30	0.74	0.68	0.73	0.68	1.08	0.97	
HEDM-45 (ΔH_f) —	5.55	9.06	4.33	3.90	3.46	3.48	1.20	2.27	3.80	0.96	2.87	1.25	
PAH-103 (Δ <i>H</i> _f) —	2.10	14.72	2.93	2.89	7.63	5.73	1.96	1.13	1.19	0.79	1.75	1.15	
CHNO (ΔH_r) —	1.92	1.75	1.41	1.39	1.32	1.29	0.94	1.02	1.06	0.22	2.63	0.68	
CONFORMERS30 (ΔH_r) -	1.36	1.19	1.09	1.09	1.29	1.28	1.28	1.27	1.35	1.20	1.37	1.37	
ISOMERS44 (ΔH_r) —	0.70	2.29	1.45	1.31	1.19	1.10	0.40	0.44	0.50	0.50	1.62	0.61	
ALKANES28 (ΔH_r) —	0.34	1.90	1.10	0.94	1.74	1.14	0.28	0.32	0.59	0.39	0.20	0.08	
AF6 (Δ <i>H</i> _r) —	1.32	3.07	0.55	1.68	1.28	0.73	1.02	1.05	0.45	—	3.67	—	

'Outliers' – uncertain predictions

Mean absolute errors (MAEs) in kcal/mol of benchmarked methods for various data sets. MAEs of AIQM1 and ANI-1ccx P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, *J. Phys. Chem. Lett.* **2022**, *13*, 3479

• Example ML-uni-4.

Optimize and calculate frequencies of H₂ with ANI-1ccx but starting not from initial bond length of 0.7 A as in the previous task but with 0.8 A.

Questions:

- 1. Is the geometry you have obtained the same as in the previous task?
- 2. Is your optimized geometry true minimum?
- 3. What is its heats of formation?
- 4. Is this calculation certain?

Dissociation curves

L. Zhang & Y. Hou, F. Ge, P. O. Dral, Phys. Chem. Chem. Phys. 2023, 25, 23467