.. _ml-namd: Surface-hopping nonadiabatic dynamics ====================================== Many processes, i.e., photophysics and photochemistry but also many reactions, occur not just on a ground-state PES but involve other electronic states: .. image:: _static/lecture5/electronic_states_PES.png :width: 800 :align: center :alt: Electronic state PES. Simulating their dynamics properly is even more complicated. One of the most popular approaches is the so-called surface-hopping nonadiabatic dynamics where many trajectories are propagated starting from different states. In each trajectory, the molecule is allowed to *hop* from one electronic surface to another and then we can count how many trajectories at a given time stay on each surface (the percentage is called *population*). This is very computationally intensive task and, hence, ML is also eagerly awaited solution which is still far from trivial to use in nonadiabatic simulations. MLatom can also perform `such simulations `__ but currently only in Python. The results with AIQM1 which does not need any training are often quite good too. The tutorial below is adapted from MLatom's documentation prepared together with Lina Zhang. In this tutorial we show how to perform nonadiabatic molecular dynamics (NAMD) with MLatom (and its interfaces to :ref:`Newton-X ` whenever required). The simulations are only possible through the Python API. MLatom currently only supports NAC-free Landau--Zener--Belyev--Lebedev (LZBL) surface hopping. Here we show two examples of how to propagate dynamics with: - the :ref:`universal AIQM1 method ` (ML-improved semi-empirical QM approach faster than DFT) - :ref:`machine learning potentials ` See our paper for more details (please also cite it if you use this feature): * Lina Zhang, Sebastian Pios, MikoĊ‚aj Martyka, Fuchun Ge, Yi-Fan Hou, Yuxinxin Chen, Joanna Jankowska, Lipeng Chen, Mario Barbatti, `Pavlo O. Dral `__. `MLatom software ecosystem for surface hopping dynamics in Python with quantum mechanical and machine learning methods `__. *J. Chem. Theory Comput.* **2024**, *20*, 5043--5057. DOI: 10.1021/acs.jctc.4c00468. Preprint on *arXiv*: https://arxiv.org/abs/2404.06189. .. _ml-namd-slides: Slides ------ :download:`Slides <_static/mlatom/10-XACSW2024_20240705_Dral_wm.pdf>`: .. raw:: html .. _tutorial_namd_ml: Machine learning ---------------- In this tutorial, we show a more advanced example of running surface-hopping MD with ML models. Please see a separate tutorial on :ref:`machine learning potentials ` in general and later we will provide tutorials on how to train MLPs specifically for excited states. You can :download:`download ` the Jupyter notebook with the required initial conditions and ML models from `this paper `__. The tutorial calculations are very fast and you should be able to get the final population plot for 5 fs with 0.25 fs time step from 30 trajectories within a minute. Here is the Jupyter notebook code snippet: .. code-block:: python import mlatom as ml import os import numpy as np # Read initial conditions init_cond_db = ml.data.molecular_database.load(filename='materials/init_cond_db_for_pyrazine.json', format='json') # We need to create a class that accepts the specific arguments shown below and saves the calculated electronic state properties in the molecule object class mlmodels(): def __init__(self, nstates = 5): folder_with_models = 'materials/lz_models' self.models = [None for istate in range(nstates)] for istate in range(nstates): self.models[istate] = [ml.models.ani(model_file=f'{folder_with_models}/ensemble{ii+1}s{istate}.pt') for ii in range(2)] for ii in range(2): self.models[istate][ii].nthreads = 1 def predict(self, molecule=None, nstates=5, current_state=0, calculate_energy=True, calculate_energy_gradients=True): molecule.electronic_states = [molecule.copy() for ii in range(nstates)] for istate in range(nstates): moltmp = molecule.electronic_states[istate] moltmpens = [moltmp.copy() for ii in range(2)] for ii in range(2): self.models[istate][ii].predict(molecule=moltmpens[ii], calculate_energy = True, calculate_energy_gradients = True) moltmp.energy = np.mean([moltmpens[ii].energy for ii in range(2)]) moltmp.energy_gradients = np.mean([moltmpens[ii].energy_gradients for ii in range(2)], axis=0) molecule.energy = molecule.electronic_states[current_state].energy molecule.energy_gradients = molecule.electronic_states[current_state].energy_gradients models = mlmodels() # Arguments for running NAMD trajectories timemax = 5 # fs namd_kwargs = { 'model': models, 'time_step': 0.25, # fs 'maximum_propagation_time': timemax, 'dump_trajectory_interval': None, 'hopping_algorithm': 'LZBL', 'nstates': 5, 'random_seed': 1, # making sure that the hopping probabilities are the same (should not be used in actual calculations!) 'rescale_velocity_direction': 'along velocities', 'reduce_kinetic_energy': False, } # Run 30 trajectories dyns = ml.simulations.run_in_parallel(molecular_database=init_cond_db[:30], task=ml.namd.surface_hopping_md, task_kwargs=namd_kwargs) trajs = [d.molecular_trajectory for d in dyns] ml.namd.analyze_trajs(trajectories=trajs, maximum_propagation_time=timemax) # Dump the trajectories for itraj in range(len(trajs)): trajs[itraj].dump(filename=f'traj{itraj+1}.json', format='json') # Prepare the population plot ml.namd.plot_population(trajectories=trajs, time_step=0.25, max_propagation_time=timemax, nstates=5, filename=f'pop.png') Since we used the fixed random seed, you should get the following final population: .. image:: materials/tutorial_namd/pyrazine_lznamd_ml_population.png :width: 600 Setup for calculations on your computer with AIQM1 -------------------------------------------------- Depending on the electron structure method or machine learning model, you might need to install the development version of MLatom and external programs such as :ref:`MNDO ` (required for AIQM1 and semi-empirical QM), :ref:`COLUMBUS ` (required for CASSCF), :ref:`Turbomole ` (required for ADC(2)), or :ref:`TorchANI ` (required for AIQM1 and ANI potentials). :ref:`dftd4 ` is also required for AIQM1. .. _tutorial_namd_aiqm1: AIQM1 ----- This tutorial consists of two parts: - :ref:`single-point calculations ` to better understand how to use MLatom for excited-state calculations - :ref:`surface-hopping dynamics ` building upon the previous example. .. _tutorial_namd_sp: Single-point excited-state calculations +++++++++++++++++++++++++++++++++++++++ Please download the tutorial files (:download:`sp_aiqm1.zip `). To start, we provide the initial geometry for :math:`\text{CNH}_4^+` in the ``cnh4+.xyz`` file, with coordinates in Angstrom, which looks like this: .. code-block:: 6 symmetry c1 N 0.051443000 -0.125748000 0.596619000 C 0.067113000 -0.025698000 -0.683445000 H 0.002169000 0.695516000 1.199263000 H 0.087711000 -1.030762000 1.065358000 H 0.027120000 0.954772000 -1.143351000 H 0.120118000 -0.922908000 -1.288953000 Then we can use this geometry to calculate the excited-state properties at the AIQM1/CIS level (in the comments also for AIQM1/MRCI): .. code-block:: python #!/usr/bin/env python # coding: utf-8 import mlatom as ml # get the molecule object mol = ml.data.molecule() mol.read_from_xyz_file('cnh4+.xyz') mol.charge = 1 # define the method aiqm1 = ml.models.methods(method='AIQM1') # To run AIQM1/MRCI calculations, you can uncomment the following line and make sure that mndokw file is available (see below) #aiqm1 = ml.models.methods(method='AIQM1',qm_program_kwargs={'read_keywords_from_file':'mndokw'}) # calculate electronic state properties aiqm1.predict(molecule=mol, nstates=3, # Number of electronic states to calculate current_state=2, # Requests calculating properties for the S2 electronic state (the third one or second excited) calculate_energy=True, calculate_energy_gradients=[True, True, True], # requests calculating gradients for all three states #calculate_energy_gradients=True # requests calculating gradients only for the current state for many methods (but not for AIQM1 yet) calculate_nacv=False, # calculate nonadiabatic coupling vectors read_density_matrix=False) # show the energy and gradients of each state for i in range(len(mol.electronic_states)): print(f'Energy of state {i}, {mol.electronic_states[i].energy}') print(f'Energy gradients of state {i}') print(mol.electronic_states[i].energy_gradients) # or alternatively: print('Electronic state energies:', mol.state_energies) print('Energy gradients in all electronic states') print(mol.state_gradients) # save the molecule object in file mol.dump(filename="mol.json", format="json") The output produced by the above Python script will look like this: .. code-block:: Energy of state 0, -94.87746605828193 Energy gradients of state 0 [[-2.20979325e-05 -3.09923481e-05 4.19648750e-04] [ 1.84361461e-05 7.32504232e-05 -9.31292919e-04] [-2.19042984e-04 4.91462433e-03 -8.93827657e-04] [ 2.61506161e-04 -4.71725762e-03 -1.64437563e-03] [ 1.19805843e-04 -2.90049761e-03 1.30834139e-03] [-1.58607238e-04 2.66087287e-03 1.74150332e-03]] Energy of state 1, -94.63515481241645 Energy gradients of state 1 [[ 5.04737245e-04 3.19599783e-03 -4.08726944e-02] [ 4.00318642e-04 2.59615245e-03 -3.32555938e-02] [ 2.10040873e-04 2.67707897e-05 -1.31297761e-02] [ 1.06425061e-04 2.01394042e-03 -1.29785531e-02] [-1.28339570e-04 -1.37049107e-02 4.93587653e-02] [-1.09318226e-03 5.87204910e-03 5.08778502e-02]] Energy of state 2, -94.58438542616139 Energy gradients of state 2 [[-3.22384930e-04 -1.95587619e-03 2.50398870e-02] [ 1.58487817e-03 1.00715972e-02 -1.28916150e-01] [-9.11050390e-06 3.73598849e-03 -1.03835407e-02] [ 2.78260000e-04 -2.07710696e-03 -1.08367181e-02] [ 2.43944556e-03 -6.96100621e-02 5.75290677e-02] [-3.97108828e-03 5.98354594e-02 6.75674517e-02]] Electronic state energies: [-94.87746606 -94.63515481 -94.58438543] Energy gradients in all electronic states [[[-2.20979325e-05 -3.09923481e-05 4.19648750e-04] ... All results of the calculations will be dumped into ``mol.json`` which you can inspect to get a better idea how the data are stored in MLatom and how to access different properties through its Python API. If you used AIQM1/MRCI, you would need to select active space and make other adjustments to the keywords passed to the MNDO program (see `its documentation `__). In our case, you would need to use ``mndokw`` file which looks like this: .. code-block:: jop=-2 + iop=-22 immdp=-1 igeom=1 iform=1 nsav15=3 + icuts=-1 icutg=-1 kitscf=9999 iscf=9 iplscf=9 + iprint=-1 kprint=-5 lprint=-2 mprint=0 jprint=-1 + kharge=1 imult=0 nprint=-1 + kci=5 movo=-1 ici1=2 ici2=1 jci1=1 jci2=1 nciref=0 + iroot=3 iuvcd=2 + ncisym=-1 ioutci=3 ipubo=1 + ncigrd=3 icross=1 The output would be then: .. code-block:: Energy of state 0, -94.88480497779682 Energy gradients of state 0 [[ 1.34242995e-04 9.67083232e-04 -1.23502153e-02] [-1.78362286e-04 -1.17842971e-03 1.50824778e-02] [-9.10435874e-05 2.63194636e-03 -2.00336109e-03] [ 1.56325835e-04 -2.28966888e-03 -2.38851941e-03] [ 3.31705685e-05 -9.16708517e-04 7.62840787e-04] [-5.43335121e-05 7.85777537e-04 8.96776412e-04]] Energy of state 1, -94.63484529385708 Energy gradients of state 1 [[ 0.00050423 0.00321188 -0.04107714] [ 0.00044946 0.00290478 -0.0372039 ] [ 0.00017054 0.00049241 -0.01193939] [ 0.00012002 0.001369 -0.01187431] [-0.00012679 -0.01405619 0.0502662 ] [-0.00111746 0.00607812 0.05182854]] Energy of state 2, -94.56976745482731 Energy gradients of state 2 [[ 6.21429387e-03 3.96821088e-02 -5.07668904e-01] [-6.24036735e-03 -3.98880933e-02 5.10344195e-01] [-9.20936201e-05 2.29106816e-03 -1.36149279e-03] [ 1.28184773e-04 -2.05330005e-03 -1.70182967e-03] [ 9.81727653e-05 -2.05300286e-03 3.51054010e-05] [-1.08190451e-04 2.02121919e-03 3.52925482e-04]] .. _tutorial_namd_aiqm1_lzsh: Dynamics ++++++++ Here we extend above example to show row to use the same method as before (AIQM1/MRCI) in propagating LZBL surface-hopping dynamics. Please download the tutorial files (:download:`namd_aiqm1.zip `). The script below does all the steps from start to finish: - optimizes geometry - runs frequency calculations - samples initial conditions from the Wigner distribution using Newton-X's routines. Example can be extended to supports filtering by excitation energy window (refer to the :ref:`manual ` for more details) - propagates multiple trajectories in parallel (here 16 trajectories for 5 fs with 0.1 fs time step) - saves trajectories in the h5md format - analyzes results by generating the population plots. Here is the script: .. code-block:: python import mlatom as ml # Load the initial geometry of a molecule mol = ml.data.molecule() mol.charge=1 mol.read_from_xyz_file('cnh4+.xyz') # Define methods # .. for NAMD aiqm1 = ml.models.methods(method='AIQM1', qm_program_kwargs={'save_files_in_current_directory': True, 'read_keywords_from_file':'../materials/mndokw'}) # .. for optimization, frequencies and normal mode calculations method_optfreq = ml.models.methods(method='B3LYP/Def2SVP', program='pyscf') # Optimize geometry geomopt = ml.simulations.optimize_geometry(model=method_optfreq, initial_molecule=mol) eqmol = geomopt.optimized_molecule eqmol.write_file_with_xyz_coordinates('eq.xyz') # Get frequencies ml.simulations.freq(model=method_optfreq, molecule=eqmol) eqmol.dump(filename='eqmol.json', format='json') # Get initial conditions init_cond_db = ml.generate_initial_conditions(molecule=eqmol, generation_method='wigner', number_of_initial_conditions=16, initial_temperature=0, random_seed=1) # To ensure we always get the same initial conditions (should not be used in actual calculations) init_cond_db.dump('test.json','json') # Propagate multiple LZBL surface-hopping trajectories in parallel # .. setup dynamics calculations namd_kwargs = { 'model': aiqm1, 'time_step': 0.25, 'maximum_propagation_time': 5, 'hopping_algorithm': 'LZBL', 'nstates': 3, 'initial_state': 2, # Numbering of states starts from 0! 'random_seed': 1 # To ensure we always get the same initial conditions (should not be used in actual calculations) } # .. run trajectories in parallel dyns = ml.simulations.run_in_parallel(molecular_database=init_cond_db, task=ml.namd.surface_hopping_md, task_kwargs=namd_kwargs, create_and_keep_temp_directories=True) trajs = [d.molecular_trajectory for d in dyns] # Dump the trajectories itraj=0 for traj in trajs: itraj+=1 traj.dump(filename=f"traj{itraj}.h5",format='h5md') # Analyze the result of trajectories and make the population plot ml.namd.analyze_trajs(trajectories=trajs, maximum_propagation_time=5) ml.namd.plot_population(trajectories=trajs, time_step=0.25, max_propagation_time=5, nstates=3, filename=f'pop.png', pop_filename='pop.txt') And here is the final population plot (your plot will be different because of the random seed in initial conditions and hoppings): .. image:: materials/tutorial_namd/cnh4+_aiqm1cis_lznamd_population.png :width: 600 You will also get the text file with populations ``pop.txt`` which should look like: .. code-block:: 0.000 0.0 0.0 1.0 0.250 0.0 0.0 1.0 0.500 0.0 0.0 1.0 0.750 0.0 0.0 1.0 ... Download the full file :download:`cnh4+_aiqm1cis_lznamd_population.txt `.