Output
Main XMVB output file (.xmo)
The output of XMVB is stored in a file with extesion “xmo”. The following is an example for stand-alone XMVB:
*************************************************************
M M MM MM M M MMMM
M M M M M M M M M
M M M M M M MMMM
M M M M M M M M
M M M M M MMMM
*************************************************************
Released on: Dec 31, 2024
Version: v4.0
Cite this work as:
(a) Z. Chen, F. Ying, X. Chen, J. Song, P. Su, L. Song, Y.
Mo, Q. Zhang and W. Wu, Int. J. Quantum. Chem., 2015, 115,
737 (b) L. Song, Y. Mo, Q. Zhang, W. Wu, J. Comput. Chem.
2005, 26, 514.
Job started at 2024-12-27 09:45:12 with 1 processors.
Running Command: /home/fmying/softwares/xmvb4.0/bin/xmvb.exe example.xmi
Work Directory at /home/fmying/tests/xeda PID = 1171824
---------------Input File---------------
H2 L-VBSCF # Job title
$CTRL # Start of $CTRL section
VBSCF # VBSCF requested
NSTR=3 # 3 VB structures in this computation
NAO=2 NAE=2 # Active space of VBSCF computation
ORBTYP=HAO FRGTYP=SAO # VB orbitals are HAO with symmetrized atomic orbital fragments (SAO)
INT=LIBCINT # Integrals are evaluated with LIBCINT library
BASIS=CC-PVTZ # Basis set is cc-pVTZ
$END # End of $CTRL section
$STR # Start of $STR section for structure description with NSTR defined in $CTRL
1 2 # covalent structure H-H
1 1 # ionic structure H- H+
2 2 # ionic structure H+ H-
$END # End of $STR section
$FRAG # Start of $FRAG section since SAO fragment is requested
1*2 # 2 fragments, 1 atom included in each
SPZDXXDYYDZZ 1 # Fragment 1, basis functions s, pz, dxx, dyy and dzz on atom 1
SPZDXXDYYDZZ 2 # Fragment 2, basis functions s, pz, dxx, dyy and dzz on atom 2
$END # End of $FRAG section
$ORB # Start of $ORB section for orbital description
1*2 # 2 VB orbitals, each includes 1 fragment (since fragments defined in $FRAG)
1 # orbital 1, with only fragment 1
2 # orbital 2, with only fragment 2
$END # End of $ORB section
$GEO # Start of $GEO section since INT=LIBCINT requested
H 0.0 0.0 0.0 # H2 coordinate given in Cartesian
H 0.0 0.0 0.74
$END # End of $GEO section
$GUS # Initial guess given so XMVB will read the guess from $GUS
13 13
-0.1832851345 1 -0.5117940349 2 -0.3429525369 3 -0.0092055565 6
-0.2395130627 9 0.1175624842 10 0.1175624842 13 -0.3785628637 15
0.0067601194 16 -0.0847166935 19 -0.0822702356 20 -0.0822702356 23
0.2820622096 25
-0.1832851345 26 -0.5117940349 27 -0.3429525369 28 0.0092055565 31
0.2395130627 34 0.1175624842 35 0.1175624842 38 -0.3785628637 40
0.0067601194 41 0.0847166935 44 -0.0822702356 45 -0.0822702356 48
0.2820622096 50
$END
---------------End of Input--------------
ATOM ATOMIC COORDINATES (BOHR)
CHARGE X Y Z
H 1.0 0.00000000 0.00000000 0.00000000
H 1.0 0.00000000 0.00000000 1.39839723
ATOMIC BASIS SET
----------------
THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED
THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY
SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S)
H
1 S 1 33.8700000 0.060717944636
1 S 2 5.0950000 0.109507313653
1 S 3 1.1590000 0.161468469999
2 S 4 0.3258000 0.307343053831
3 S 5 0.1027000 0.129296844175
4 P 6 1.4070000 2.184276984527
5 P 7 0.3880000 0.436495473997
6 D 8 1.0570000 2.875150705387
7 S 9 0.0252600 0.045158041868
8 P 10 0.1020000 0.082165651392
9 D 11 1.2470000 3.839685728860
H
10 S 12 33.8700000 0.060717944636
10 S 13 5.0950000 0.109507313653
10 S 14 1.1590000 0.161468469999
11 S 15 0.3258000 0.307343053831
12 S 16 0.1027000 0.129296844175
13 P 17 1.4070000 2.184276984527
14 P 18 0.3880000 0.436495473997
15 D 19 1.0570000 2.875150705387
16 S 20 0.0252600 0.045158041868
17 P 21 0.1020000 0.082165651392
18 D 22 1.2470000 3.839685728860
TOTAL NUMBER OF BASIS SET SHELLS = 18
NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 50
NUMBER OF ELECTRONS = 2
CHARGE OF MOLECULE = 0
SPIN MULTIPLICITY = 1
TOTAL NUMBER OF ATOMS = 2
Number of structures: 3
The following structures are used in calculation (First 10 structures if more than 10):
1 ****** 1-2
2 ****** 1 1
3 ****** 2 2
Number of variables for VBSCF/BOVB : 26
VBSCF algorithm: RDM-VBSCF with L-BFGS.
Maximum number of Iterations: 200
Integral evaluation: precise integrals by Libcint.
2-e integral strategy: Continuous storage.
Non-zero 2-e integrals: 208746
---------------Initial Guess---------------
13 13
-0.1832851345 1 -0.5117940349 2 -0.3429525369 3 -0.0092055565 6
-0.2395130627 9 0.1175624842 10 0.1175624842 13 -0.3785628637 15
0.0067601194 16 -0.0847166935 19 -0.0822702356 20 -0.0822702356 23
0.2820622096 25
-0.1832851345 26 -0.5117940349 27 -0.3429525369 28 0.0092055565 31
0.2395130627 34 0.1175624842 35 0.1175624842 38 -0.3785628637 40
0.0067601194 41 0.0847166935 44 -0.0822702356 45 -0.0822702356 48
0.2820622096 50
---------------End of Guess--------------
ITER ENERGY DE GNORM
0 -1.0991969662 -1.0991969662 0.3256427635
1 -1.1151851534 -0.0159881872 0.1905658959
2 -1.1301731700 -0.0149880166 0.1475571480
3 -1.1395803722 -0.0094072021 0.0847119277
4 -1.1404406418 -0.0008602696 0.1935235677
5 -1.1433770310 -0.0029363892 0.0433892043
6 -1.1437072788 -0.0003302478 0.0331485174
7 -1.1443513767 -0.0006440978 0.0449778952
8 -1.1453272038 -0.0009758271 0.0621994898
9 -1.1476294877 -0.0023022840 0.0784451297
10 -1.1497181878 -0.0020887001 0.0554836560
11 -1.1502019560 -0.0004837682 0.0589803735
12 -1.1507263286 -0.0005243726 0.0118197257
13 -1.1507579569 -0.0000316283 0.0060619737
14 -1.1507768528 -0.0000188959 0.0067906114
15 -1.1508094903 -0.0000326375 0.0102259200
16 -1.1508469666 -0.0000374763 0.0112162387
17 -1.1508917560 -0.0000447894 0.0075657985
18 -1.1509191403 -0.0000273844 0.0032362598
19 -1.1509314231 -0.0000122827 0.0045508486
20 -1.1509402559 -0.0000088328 0.0052668325
21 -1.1509508184 -0.0000105625 0.0042255260
22 -1.1509402498 0.0000105686 0.0042255260
23 -1.1509526750 -0.0000124253 0.0066708681
24 -1.1509582122 -0.0000055371 0.0022492441
25 -1.1509601118 -0.0000018997 0.0018361504
VBSCF converged in 25 iterations
Total Energy: -1.15096011
****** OVERLAP OF VB STRUCTURES ******
1 2 3
1 1.000000 0.826075 0.826075
2 0.826075 1.000000 0.517911
3 0.826075 0.517911 1.000000
****** HAMILTONIAN OF VB STRUCTURES ******
1 2 3
1 -1.860486 -1.563714 -1.563714
2 -1.563714 -1.537921 -1.117824
3 -1.563714 -1.117824 -1.537922
****** COEFFICIENTS OF STRUCTURES ******
1 -0.82676792 ****** 1-2
2 -0.10385200 ****** 1 1
3 -0.10385236 ****** 2 2
****** COEFFICIENTS OF DETERMINANTS WITHOUT NORMALIZED ******
A
B
1 -0.82676792 ****** 2
1
2 -0.82676792 ****** 1
2
3 -0.10385200 ****** 1
1
4 -0.10385236 ****** 2
2
****** WEIGHTS OF STRUCTURES ******
1 0.82540150 ****** 1-2
2 0.08729909 ****** 1 1
3 0.08729941 ****** 2 2
Lowdin Weights
1 0.52940646 ****** 1-2
2 0.23529665 ****** 1 1
3 0.23529689 ****** 2 2
Inverse Weights
1 0.93221948 ****** 1-2
2 0.03389014 ****** 1 1
3 0.03389038 ****** 2 2
Renormalized Weights
1 0.96940850 ****** 1-2
2 0.01529570 ****** 1 1
3 0.01529580 ****** 2 2
****** ORBITALS IN PRIMITIVE BASIS FUNCTIONS ******
1 2
1 H 1 S -0.366039 0.000000
2 H 1 S -0.505232 0.000000
3 H 1 S -0.242672 0.000000
4 H 1 PX 0.000000 0.000000
5 H 1 PY 0.000000 0.000000
6 H 1 PZ -0.020883 0.000000
7 H 1 PX 0.000000 0.000000
8 H 1 PY 0.000000 0.000000
9 H 1 PZ -0.011702 0.000000
10 H 1 DXX -0.031252 0.000000
11 H 1 DXY 0.000000 0.000000
12 H 1 DXZ 0.000000 0.000000
13 H 1 DYY -0.031256 0.000000
14 H 1 DYZ 0.000000 0.000000
15 H 1 DZZ 0.004644 0.000000
16 H 1 S 0.003102 0.000000
17 H 1 PX 0.000000 0.000000
18 H 1 PY 0.000000 0.000000
19 H 1 PZ -0.025413 0.000000
20 H 1 DXX 0.022301 0.000000
21 H 1 DXY 0.000000 0.000000
22 H 1 DXZ 0.000000 0.000000
23 H 1 DYY 0.022296 0.000000
24 H 1 DYZ 0.000000 0.000000
25 H 1 DZZ -0.010806 0.000000
26 H 2 S 0.000000 -0.366039
27 H 2 S 0.000000 -0.505232
28 H 2 S 0.000000 -0.242672
29 H 2 PX 0.000000 0.000000
30 H 2 PY 0.000000 0.000000
31 H 2 PZ 0.000000 0.020883
32 H 2 PX 0.000000 0.000000
33 H 2 PY 0.000000 0.000000
34 H 2 PZ 0.000000 0.011702
35 H 2 DXX 0.000000 -0.031252
36 H 2 DXY 0.000000 0.000000
37 H 2 DXZ 0.000000 0.000000
38 H 2 DYY 0.000000 -0.031256
39 H 2 DYZ 0.000000 0.000000
40 H 2 DZZ 0.000000 0.004644
41 H 2 S 0.000000 0.003102
42 H 2 PX 0.000000 0.000000
43 H 2 PY 0.000000 0.000000
44 H 2 PZ 0.000000 0.025413
45 H 2 DXX 0.000000 0.022301
46 H 2 DXY 0.000000 0.000000
47 H 2 DXZ 0.000000 0.000000
48 H 2 DYY 0.000000 0.022296
49 H 2 DYZ 0.000000 0.000000
50 H 2 DZZ 0.000000 -0.010806
****** COMPUTED NATURAL ORBITALS ******
1 2
1.978405 0.021595
1 H 1 S 0.197374 -0.488844
2 H 1 S 0.272430 -0.674736
3 H 1 S 0.130853 -0.324087
4 H 1 PX 0.000000 0.000000
5 H 1 PY 0.000000 0.000000
6 H 1 PZ 0.011261 -0.027890
7 H 1 PX 0.000000 0.000000
8 H 1 PY 0.000000 0.000000
9 H 1 PZ 0.006310 -0.015628
10 H 1 DXX 0.016851 -0.041737
11 H 1 DXY 0.000000 0.000000
12 H 1 DXZ 0.000000 0.000000
13 H 1 DYY 0.016854 -0.041743
14 H 1 DYZ 0.000000 0.000000
15 H 1 DZZ -0.002504 0.006203
16 H 1 S -0.001673 0.004143
17 H 1 PX 0.000000 0.000000
18 H 1 PY 0.000000 0.000000
19 H 1 PZ 0.013703 -0.033939
20 H 1 DXX -0.012025 0.029783
21 H 1 DXY 0.000000 0.000000
22 H 1 DXZ 0.000000 0.000000
23 H 1 DYY -0.012022 0.029776
24 H 1 DYZ 0.000000 0.000000
25 H 1 DZZ 0.005827 -0.014431
26 H 2 S 0.197375 0.488844
27 H 2 S 0.272430 0.674736
28 H 2 S 0.130853 0.324087
29 H 2 PX 0.000000 0.000000
30 H 2 PY 0.000000 0.000000
31 H 2 PZ -0.011261 -0.027889
32 H 2 PX 0.000000 0.000000
33 H 2 PY 0.000000 0.000000
34 H 2 PZ -0.006310 -0.015628
35 H 2 DXX 0.016851 0.041736
36 H 2 DXY 0.000000 0.000000
37 H 2 DXZ 0.000000 0.000000
38 H 2 DYY 0.016854 0.041743
39 H 2 DYZ 0.000000 0.000000
40 H 2 DZZ -0.002504 -0.006202
41 H 2 S -0.001673 -0.004143
42 H 2 PX 0.000000 0.000000
43 H 2 PY 0.000000 0.000000
44 H 2 PZ -0.013703 -0.033939
45 H 2 DXX -0.012025 -0.029783
46 H 2 DXY 0.000000 0.000000
47 H 2 DXZ 0.000000 0.000000
48 H 2 DYY -0.012022 -0.029776
49 H 2 DYZ 0.000000 0.000000
50 H 2 DZZ 0.005827 0.014431
===============================================
XMVB ATOMIC POPULATION ANALYSIS
===============================================
****** POPULATION AND CHARGE ******
ATOM MULL.POP. CHARGE LOW.POP. CHARGE
1 H 1.000000 0.000000 1.000000 0.000000
2 H 1.000000 -0.000000 1.000000 -0.000000
****** ATOMIC SPIN POLARIZATION POPULATION ******
ATOM MULL.POP. LOW.POP.
1 H 0.000000 0.000000
2 H 0.000000 0.000000
****** BOND ORDER ******
ATOM 1 ATOM 2 DIST BOND ORDER
1 H 2 H 0.740 0.957
****** VALENCE ANALYSIS ******
TOTAL BONDED FREE
ATOM VALENCE VALENCE VALENCE
1 H 1.000 0.957 0.043
2 H 1.000 0.957 0.043
****** DIPOLE MOMENT ANALYSIS ******
DX DY DZ TOTAL
0.000000 0.000000 3.554378 3.554378
****** VIRIAL THEOREM ANALYSIS ******
TOTAL ENERGY : -1.150960111841
NUCLEAR REP. ENERGY : 0.715104390541
ELECTRONIC ENERGY : -1.866064502382
ONE-ELECTRON ENERGY : -2.493244521354
TWO-ELECTRON ENERGY : 0.627180018972
KINETIC ENERGY : 1.165910213884
NUC-ELE POT. ENERGY : -3.659154735238
POTENTIAL ENERGY : -2.316870325725
VIRIAL THEOREM VALUE : 1.987177312743
Cpu time for the job: 0.625 seconds.
File with VB Structures for future input (.str)
In XMVB 4.0, VB structures are shown in the output file with a new style to make it more readable. So the file with extension “str” is generated for the users if they need to select structures and input them manually in the future. An example of the content is shown below:
12
1 ***** 1:4 7 7 10 10 5 6 8 9
2 ***** 1:4 8 8 9 9 5 6 7 10
3 ***** 1:4 7 7 10 10 8 9 5 6
4 ***** 1:4 8 8 9 9 7 10 5 6
5 ***** 1:4 7 7 9 9 5 6 8 10
6 ***** 1:4 8 8 10 10 5 6 7 9
7 ***** 1:4 8 8 10 10 5 5 7 9
8 ***** 1:4 7 7 9 9 6 6 8 10
9 ***** 1:4 8 8 9 9 5 5 7 10
10 ***** 1:4 7 7 10 10 6 6 8 9
11 ***** 1:4 7 7 10 10 5 5 8 9
12 ***** 1:4 8 8 9 9 6 6 7 10
The first line is the number of structures in the computation, then a blank line, and following are the structures.
File with optimized VB orbitals (.orb)
A file with extension “orb” is an output file of XMVB, which stores the optimized VB orbitals. The format is as follows:
max(1), max(2), . . . , max(val3)
# comment for orbital 1
cvic(1,1), nvic(1,1), cvic(1,1), nvic(2,1), . . . , cvic(max(1),1), nvic(max(1),1)
# comment for orbital 2
cvic(1,2), nvic(1,2), cvic(2,2), nvic(2,2), . . . , cvic(max(2),2), nvic(max(2),2)
. . .
# comment for orbital n
cvic(1,val3), nvic(1,val3), cvic(2,val3), nvic(2, val3), . . . , cvic(max(val3), val3), nvic(max(val3), val3)
where max(i) stands for the number of basis functions in \(i^\textrm{th}\) VB orbital, nvic(j,i) is the \(j^\textrm{th}\) basis function in \(i^\textrm{th}\) VB orbital and cvic(j,i) is the coefficient of nvic(j,i). The lines starting with “#” are treated as comments.
File with additional information (.xdat)
The file with extension “xdat” is an output file of XMVB. It keeps some other information such as the orbitals in original basis form. Using utility overview:viewing vb orbitals: moldendat can read this file and put the VB orbitals to Gaussian and GAMESS output files and Gaussian fchk files.
File with coefficients for the structures/determinants (.coeff)
This file will be obtained after a required TBVBSCF
calculation. The coefficients for the structures/determinants are stored in the file and it may be used for later TBVBSCF to accelerate solving secular equation which is proceeded by Davidson Diagnolazation. If the number of structures is larger than the number stored in “coef”, they will be treated as coefficients of the first N structures and the rest will be set to zero.