#!/usr/bin/env python3
'''
.. code-block::
!---------------------------------------------------------------------------!
! orca: interface to the ORCA program !
! Implementations by: Yuxinxin Chen !
!---------------------------------------------------------------------------!
'''
import os
import numpy as np
import math
import tempfile, subprocess
from .. import constants, models
from ..decorators import doc_inherit
[文档]
class orca_methods(models.model, metaclass=models.meta_method):
'''
ORCA interface
Arguments:
method (str): method used the same as in ORCA, e.g. ``'B3LYP/6-31G*'`` (case insensitive). This is the first line in orca input and you can also store the whole first line here.
save_files_in_current_directory (bool): whether to keep input and output files, default ``'False'``
working_directory (str): path to the directory where the program output files and other tempory files are saved, default ``'None'``
nthreads (int): equivalent to %pal nprocs in ORCA input file
nthreads_list (list): a list of number of nthreads used in CCSD(T)*/CBS method. The order should be [mp2_tz, mp2_qz, dlpno_normal_dz, dlpno_normal_tz, dlpno_tight_dz]
additional_keywords (list): list of keywords(str) to be added to orca input (first line)
input_file (str): name of your orca input file. Default will use "[molecule number]_"
output_keywords (list): list of keywords that you want to extract from output file. (Currently customized keywords are only supported in energy calculation and in property.txt file)
.. note::
When using CCSD(T)*/CBS for calculation, please make sure the ``'nthreads'`` you used for each method will not cause memory exceeding.
We suggest using ``'nthreads_list'`` to properly set ``'nthreads'`` for each component method in the order: [MP2/cc-pVTZ, MP2/cc-pVQZ, DLPNO-CCSD(T)-normalPNO/cc-pVDZ, DLPNO-CCSD(T)-normalPNO/cc-pVTZ, DLPNO-CCSD(T)-tightPNO/cc-pVTZ]
If only ``'nthreads'`` is set, all component methods would use the same number of threads.
'''
def __init__(self, method='wb97x/6-31G*', **kwargs):
if not "orcabin" in os.environ:
raise ValueError('enviromental variable orcabin is not set')
else:
self.orcabin = os.environ['orcabin']
self.method = method
self.orca_successful = True
if self.method == 'CCSD(T)*/CBS':
self.cc_method = ccsdtstarcbs(**kwargs)
if 'nthreads' in kwargs:
self.nthreads = kwargs['nthreads']
else:
self.nthreads = 1
if 'maxcore' in kwargs:
self.maxcore = kwargs['maxcore']
else:
self.maxcore = 1000
if 'additional_keywords' in kwargs:
self.additional_keywords = kwargs['additional_keywords']
else:
self.additional_keywords = None
if 'save_files_in_current_directory' in kwargs:
self.save_files_in_current_directory = kwargs['save_files_in_current_directory']
else:
self.save_files_in_current_directory = True
if 'working_directory' in kwargs:
self.working_directory = kwargs['working_directory']
else:
self.working_directory = None
if 'input_file' in kwargs:
self.input_file = kwargs['input_file']
else:
self.input_file = ''
if 'output_keywords' in kwargs:
self.output_keywords = kwargs['output_keywords']
else:
self.output_keywords = None
[文档]
@doc_inherit
def predict(self, molecular_database=None, molecule=None,
calculate_energy=True, calculate_energy_gradients=False, calculate_hessian=False, **kwargs):
'''
**kwargs: ``# needs to be documented``.
'''
molDB = super().predict(molecular_database=molecular_database, molecule=molecule)
if self.method == 'CCSD(T)*/CBS':
self.cc_method.predict(molecular_database=molDB)
else:
self.calculate_energy = calculate_energy
self.calculate_energy_gradients = calculate_energy_gradients
self.calculate_hessian = calculate_hessian
with tempfile.TemporaryDirectory() as tmpdirname:
if self.save_files_in_current_directory: tmpdirname = '.'
if self.working_directory is not None:
tmpdirname = self.working_directory
if not os.path.exists(tmpdirname):
os.makedirs(tmpdirname)
tmpdirname = os.path.abspath(tmpdirname)
for imol in range(len(molDB.molecules)):
imolecule = molDB.molecules[imol]
self.inpfile = f'{tmpdirname}/molecule{imol}_' + self.input_file
# calculation
self.generate_orca_inp(molecule=imolecule)
# run orca
orcaargs = [self.orcabin, f'{self.inpfile}.inp', '>', f'{self.inpfile}.out']
proc = subprocess.Popen(' '.join(orcaargs), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=tmpdirname, universal_newlines=True, shell=True)
proc.communicate()
# read output
self.parse_orca_output(molecule=imolecule)
def parse_orca_output(self, molecule):
natom = len(molecule.atoms)
if self.calculate_energy:
if not self.calculate_energy_gradients:
with open(f'{self.inpfile}_property.txt', 'r') as orcaout:
orcaout_lines = orcaout.readlines()
for ii in range(len(orcaout_lines)):
if 'SCF Energy' in orcaout_lines[ii]: # ? check SCf energy or total enenrgy
molecule.energy = float(orcaout_lines[ii].split()[-1])
else:
with open(f'{self.inpfile}.engrad', 'r') as orcaout:
orcaout_lines = orcaout.readlines()
for ii in range(len(orcaout_lines)):
if 'total energy' in orcaout_lines[ii]:
molecule.energy = float(orcaout_lines[ii+2])
if self.calculate_energy_gradients:
with open(f'{self.inpfile}.engrad', 'r') as orcaout:
orcaout_lines = orcaout.readlines()
for ii in range(len(orcaout_lines)):
if 'gradient' in orcaout_lines[ii]:
grad = orcaout_lines[ii+2: ii+2+natom*3]
grad = [float(g.split()[0])/constants.Bohr2Angstrom for g in grad]
for ii in range(natom):
a = molecule.atoms[ii]
a.energy_gradients = grad[3*ii: 3*ii+3]
if self.calculate_hessian:
with open(f'{self.inpfile}.hess', 'r') as orcaout:
orcaout_lines = orcaout.readlines()
hessian_index = orcaout_lines.index('$hessian\n') # start from $hessian
ncoordinate = int(orcaout_lines[hessian_index+1]) # second line is #coordinates
ncircle = int((ncoordinate-0.5) / 5)+1 # blocks
hessian_matrix = np.zeros((ncoordinate, ncoordinate))
for ii in range(ncircle):
start_index = hessian_index+2+(ncoordinate+1)*ii
cols_index_list = orcaout_lines[start_index].split()
for jj in range(ncoordinate):
hessian_line = orcaout_lines[start_index+1+jj].split()
for kk in range(len(cols_index_list)):
col_index = cols_index_list[kk]
hessian_matrix[int(hessian_line[0])][int(col_index)] = float(hessian_line[kk+1])/constants.Bohr2Angstrom**2
molecule.hessian = hessian_matrix
if not self.calculate_energy and self.output_keywords:
for keyword in self.output_keywords:
keyword_name = self.input_file+'_'+keyword.lower().replace(' ', '_')
with open(f'{self.inpfile}_property.txt', 'r') as orcaout:
orcaout_lines = orcaout.readlines()
for ii in range(len(orcaout_lines)):
if keyword in orcaout_lines[ii]:
molecule.__dict__[keyword_name] = float(orcaout_lines[ii].split()[-1])
def generate_orca_inp(self, molecule, **kwargs):
with open(f'{self.inpfile}.inp', 'w') as forca:
#keywords
if '/' in self.method and len(self.method.split('/'))==2:
method_to_write = ' '.join(self.method.split('/'))
else:
method_to_write = self.method
if self.additional_keywords:
method_to_write += ' '.join(self.additional_keywords)
forca.writelines(f'! {method_to_write}\n')
# decide calculation type
if self.calculate_energy:
calculation_type = []
calculation_type += ['SP']
if self.calculate_energy_gradients:
calculation_type += ['ENGRAD']
if self.calculate_hessian:
calculation_type += ['FREQ']
calculation_type = ' '.join(calculation_type)
forca.writelines(f'! {calculation_type}\n')
forca.writelines(f'%pal nprocs {self.nthreads} end\n')
forca.writelines(f'%maxcore {self.maxcore}\n')
#structure
forca.writelines(f'* xyz {molecule.charge} {molecule.multiplicity}\n')
for atom in molecule.atoms:
line = '%s %12.8f %12.8f %12.8f\n' % (
atom.element_symbol,
atom.xyz_coordinates[0],
atom.xyz_coordinates[1],
atom.xyz_coordinates[2])
forca.writelines(line)
forca.writelines('*')
[文档]
class ccsdtstarcbs(models.model):
def __init__(self, **kwargs):
if 'nthreads_list' in kwargs:
self.nthreads_list = kwargs['nthreads_list']
if len(self.nthreads_list) != 5:
print('Number of values to asign to each methods should be 5. Default nthreads will be used')
self.nthreads_list = None
else:
self.nthreads_list = None
self.successful = True
if self.nthreads_list:
kwargs.update({'nthreads':self.nthreads_list[0], 'input_file':'mp2_tz', 'output_keywords':['SCF Energy', 'Correlation Energy']})
else:
kwargs.update({'input_file':'mp2_tz', 'output_keywords':['SCF Energy', 'Correlation Energy']})
self.mp2_tz = orca_methods(method='''RIMP2 RIJK cc-pVTZ cc-pVTZ/JK cc-pVTZ/C\n! tightscf noautostart scfconvforced miniprint nopop''',
**kwargs)
if self.nthreads_list:
kwargs.update({'nthreads':self.nthreads_list[1], 'input_file':'mp2_qz', 'output_keywords':['SCF Energy', 'Correlation Energy']})
else:
kwargs.update({'input_file':'mp2_qz', 'output_keywords':['SCF Energy', 'Correlation Energy']})
self.mp2_qz = orca_methods(method='''RIMP2 RIJK cc-pVQZ cc-pVQZ/JK cc-pVQZ/C\n! tightscf noautostart scfconvforced miniprint nopop''',
**kwargs)
if self.nthreads_list:
kwargs.update({'nthreads':self.nthreads_list[2],'input_file':'dlpno_normal_dz', 'output_keywords':['Total Correlation Energy']})
else:
kwargs.update({'input_file':'dlpno_normal_dz', 'output_keywords':['Total Correlation Energy']})
self.npno_dz = orca_methods(method='''DLPNO-CCSD(T) normalPNO RIJK cc-pVDZ cc-pVDZ/C cc-pvTZ/JK\n! tightscf noautostart scfconvforced miniprint nopop''',
**kwargs)
if self.nthreads_list:
kwargs.update({'nthreads':self.nthreads_list[3], 'input_file':'dlpno_normal_tz','output_keywords':['Total Correlation Energy']})
else:
kwargs.update({'input_file':'dlpno_normal_tz','output_keywords':['Total Correlation Energy']})
self.npno_tz = orca_methods(method='''DLPNO-CCSD(T) normalPNO RIJK cc-pVTZ cc-pVTZ/C cc-pVTZ/JK\n! tightscf noautostart scfconvforced miniprint nopop''',
**kwargs)
if self.nthreads_list:
kwargs.update({'nthreads':self.nthreads_list[4], 'input_file':'dlpno_tight_dz','output_keywords':['Total Correlation Energy']})
else:
kwargs.update({'input_file':'dlpno_tight_dz','output_keywords':['Total Correlation Energy']})
self.tpno_dz = orca_methods(method='''DLPNO-CCSD(T) tightPNO RIJK cc-pVDZ cc-pVDZ/C cc-pVTZ/JK\n! tightscf noautostart scfconvforced miniprint nopop''',
**kwargs)
self.combination = [self.mp2_tz, self.mp2_qz, self.npno_dz, self.npno_tz, self.tpno_dz]
[文档]
def predict(self, molecular_database, **kwargs):
for method in self.combination:
method.predict(molecular_database=molecular_database, calculate_energy=False)
for mol in molecular_database:
alpha = 5.46; beta = 2.51
hf_tz = mol.mp2_tz_scf_energy
hf_qz = mol.mp2_qz_scf_energy
mp2_tz = mol.mp2_tz_correlation_energy
mp2_qz = mol.mp2_qz_correlation_energy
npno_dz = mol.dlpno_normal_dz_total_correlation_energy
npno_tz = mol.dlpno_normal_tz_total_correlation_energy
tpno_dz = mol.dlpno_tight_dz_total_correlation_energy
E_hf_xtrap = (math.exp(-alpha * 4**0.5) * hf_tz - math.exp(-alpha * 3**0.5) * hf_qz) \
/ (math.exp(-alpha * 4**0.5) - math.exp(-alpha * 3**0.5))
E_mp2_xtrap = (4**beta * mp2_qz - 3**beta * mp2_tz) / (4**beta - 3**beta)
energy = E_hf_xtrap + E_mp2_xtrap - mp2_tz + npno_tz + tpno_dz - npno_dz
mol.energy = energy